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In this thesis we focus on two distinct random processes constructed using a sequence of independent

identically distributed random variables along with a product structure on the underlying space. The

first, a collection of random variables attached to vertices of the rooted binary tree, uses the multiplica-

tive structure of paths along the tree while the second, a collection of two by two random matrices, uses

the usual multiplication of matrices.

In the first chapter we construct a continuous time version of the multiplicative cascade. The multi-

plicative cascade can be thought of as a randomization of an initial measure on the boundary of a tree,

constructed from an independent, identically distributed collection of random variables attached to the

tree vertices. The new random measure is constructed from the old by weighting the measure of any

vertex v in the the tree by the product of the random variables along the path from the root to v. Given

an initial measure with certain regularity properties, we construct a continuous time, measure-valued

process whose value at each time is a cascade of the initial one. We do this by replacing the random

variables on the vertices with independent increment processes satisfying certain moment assumptions.

This process has a Markov property: at any given time it is a cascade of the process at any earlier

time by random variables that are independent of the past. It is also a martingale and, under certain

extra conditions, it is also continuous. For Gaussian independent increments processes we develop the

infinite-dimensional stochastic calculus that describes the evolution of the measure process, and use it

to compute the optimal Hölder exponent in the Wasserstein distance on measures.

In the second chapter, we characterize the scaling limit of a uniformly chosen eigenvector of the

one-dimensional discrete random Schrödinger operator,

(Hnψ)(`) = ψ(`− 1) + ψ(`+ 1) + v`ψ(`),

with ψ(0) = ψ(n + 1) = 0 and v` = ω`/
√
n. Here ω` are independent identically distributed random

ii



variables with mean zero and variance one. Our analysis uses the well known transfer matrix formulation

of the spectral problem for Hn; the spectral information is encapsulated in a process of products of

independent, identically distributed two by two random matrices. The limiting diffusion for this product

process was developed in [13] to study the local eigenvalue point process. We build on that framework

to show that the envelope of a uniformly chosen eigenvector converges weakly to the process on [0, 1],

exp

(
Bt−u√

2
− |t− u|

4

)
,

with u independent and uniform on [0, 1] and B a two-sided Brownian motion started from zero.
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Chapter 1

Diffusions of Multiplicative Cascades

1.1 Introduction

Multiplicative cascades are a particular type of random measures with many interesting statistical prop-

erties. The space on which these measures live is not always the same, but there is typically a tree

structure underlying their construction and so it is convenient to consider them as living on the bound-

ary of an infinite tree. This is the situation we consider. This has the further advantage that several

different models of statistical mechanics are fully described by this framework, most notably tree poly-

mers, branching random walk, and certain models of random walk in random environment.

For simplicity we work on a rooted, infinite binary tree T , and the boundary ∂T is the set of all

infinite self-avoiding paths that begin at the root. Elements of ∂T are called rays and we denote them by

ξ. The inputs to the cascade model are a positive measure Γ on ∂T , which can be specified arbitrarily,

and an i.i.d. collection of random variables {W (v)}v∈T attached to the vertices of the tree. The only a

priori assumption on the distribution of the W is that it is strictly positive and has mean one. These

random variables are then cascaded on to Γ to produce a random measure on ∂T ; we denote it by ΓW

or sometimes

ΓW = C(Γ;W ).

The cascading procedure is simple to describe: for each n ≥ 0 one uses the random weights W up to

generation n to construct a random measure via

dΓ
(n)
W (ξ) =

n∏
i=1

W (ξi) dΓ(ξ).

The random cascade measure is then defined as the limit

ΓW := lim
n→∞

Γ
(n)
W . (1.1.1)

A martingale argument shows that the limit exists almost surely for any choice of the initial measure Γ,

in the topology of weak convergence on the space of measures. Full details are given in Section 2. As we

will see there it may happen that ΓW is the zero measure, but nonetheless it is well-defined, and given

1



Chapter 1. Diffusions of Multiplicative Cascades 2

this the main problem is to determine the properties of ΓW and how they depend on the input measure

Γ and the cascading distribution W . Fundamental properties of cascade measures were derived in [10],

and further explorations have been made in several later papers; see for example [2, 9, 15, 17, 7].

Even in the simplest cases the relationship between ΓW and Γ is interesting. Observe that if W = 1

then ΓW = Γ, but if the cascading distribution is not identically one then ΓW is necessarily distinct

from Γ. There are two possible alternatives:

• ΓW may be identically the zero measure, even though Γ is not, but

• if ΓW is not the zero measure then it is genuinely random, meaning it depends on the specific

realization of the W variables, but almost surely it is singular with respect to Γ.

The positivity of ΓW is determined by both the regularity of Γ (roughly meaning how strongly it

concentrates on some rays more than others) and moment properties of the cascading distribution.

Full details are given in Section 1.2. The singularity property, however, holds even if the cascading

distribution is highly concentrated near one. It is a simple consequence of the fact that along any ray

the density is the product of positive, iid, mean one random variables, which almost surely goes to zero

as the number of terms in the product goes to infinity.

The main purpose of this work is to study what happens when the cascading distribution is highly

concentrated near one and the cascading procedure is iterated. The scheme is simple: start with a

positive measure Γ on ∂T and cascade once to produce ΓW . Since the cascading procedure does not

depend on the choice of the initial measure, we may use ΓW as the input measure and cascade it with

vertex variables {W ∗(v)}v∈T that are independent of the {W (v)} collection. This iteration can be

repeated indefinitely, at each time cascading with a collection of vertex variables that are independent

of all previous ones, and in doing so it produces a discrete time, measure-valued Markov process.

This discrete time process is interesting in its own right, but we prefer instead to study a continuous

time version. Intuitively the idea behind the continuous time process is clear: starting from some initial

measure, in each infinitesimal unit of time we cascade the previous measure with an independent collec-

tion of random variables whose distribution is an infinitesimal perturbation away from the degenerate

distribution at one. Repeating this scheme indefinitely builds the process.

As is usual, however, rigorously constructing the continuous time process takes more care than

constructing the discrete time one, even though the basic idea is the same. Several different construction

techniques could be considered; for example, the discrete time process is well-defined, and the continuous

time process could be constructed by taking a weak limit as the discrete time step goes to zero and the

cascading distribution concentrates near one. Alternatively, the process is essentially defined by saying

that the measure at each time is a cascade of the process at an earlier time (by an independent collection

of random variables); this is akin to specifying the transition probabilities of the process, and then the

existence would follow from the general theory on measure-valued diffusions (see for example [6]).

In this work we propose a simpler and more direct construction procedure. Instead of appealing

to the more abstract concepts above, we simply attach to the vertices of the tree a family of dynamic

weights {t 7→ Wt(v)}v∈T . Using the cascading procedure defined in equation (1.1.1), this gives us a

process t 7→ Γt := ΓWt
of random cascade measures. We choose the weight process t 7→ Wt so that the

Γt process satisfies the following important Markov property: the value at any given time is a cascade of

the value at any previous time, by a noise that is independent of the past of the process. More precisely,

our process is defined on an interval [0, T ] for some T > 0, and has the property that for any s, t ≥ 0
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such that t+ s ≤ T , both of the relations

Γt+s = C(Γ;Wt+s) and Γt+s = C
(
C (Γ;Wt) ;

Wt+s

Wt

)
hold. This is a fully rigorous statement, but should be regarded as a manifestation of the non-rigorous

infinitesimal cascading procedure described earlier. The main focus of this work is to show that, under

suitable assumptions on the i.i.d. collection of weight processes Wt(v) attached to the vertices of the

tree, the following is true:

Main Results. Assume that the process t 7→ logWt is an independent increments process, with W0 = 1,

E [Wt] = 1, and Wt always strictly positive. Assume the process is defined on an interval [0, T ] for some

T > 0. If there is a δ > 0 such that WT has a finite (1 + δ) moment, and the measure Γ is WT -regular

(see Definition 1.2.1), then

• the process Γt := C(Γ,Wt) is well-defined on [0, T ], i.e. the event that limn→∞ Γ
(n)
t exists for all

0 ≤ t ≤ T has full probability,

• for any s, t ≥ 0 with t+ s ≤ T , the equality Γt+s = C(Γt,Wt+s/Wt) also holds almost surely,

• the process is a martingale with respect to the filtration σ (Γs : s ≤ t),

• if the process t 7→ Wt is continuous, then so is the Γt process in the topology of weak convergence

of measures.

• for t 7→ logWt a Gaussian process the measure process Γt is Hölder-( 1
2 − ε) continuous in the

Wasserstein metric on measures for any ε > 0, but not Hölder-( 1
2 + ε) continuous.

These results are intuitive, but we want to emphasize that they are not immediate. It is easily seen

that all four of these properties hold trivially for the finite level t 7→ Γ
(n)
t processes, but it requires some

extra work to carry them over to the limit as n→∞. For fixed t and s, the Markov property, which is

essentially a result about the composition of cascades, was first proven by [21] and later reproved in [8].

The existence of a discrete time Markov process would therefore follow from their work. With somewhat

different analysis, we take care of the subtle difficulties in extending this notion to a continuous time

process. The main technical difficulty is that the process cannot be started from an arbitrary measure; it

has to be started from those which enjoy a sufficient amount of regularity. For practical applications the

regularity condition we use is not at all restrictive, but we have to ensure that once the process begins

it will stay within the class of sufficiently regular measures so that it can be continued. In Section 1.2

we describe exactly what we mean by sufficiently regular, and in Section 1.3 we prove that the evolution

of the regularity of the process is well-behaved. This is a part of our proof of the results above.

It is also important to note that our main technique of replacing static weights with time varying

processes has already been carried out for several other models. Likely the most prominent one is Dyson’s

Brownian motion, which is obtained by replacing the Gaussian entries of the GUE matrices with standard

Brownian motions. More recently, however, the idea has been applied to the Sherrington-Kirkpatrick

model of spin glasses in [4], and then re-applied to greater effect by a series of other authors [3, 19]. The

paper [16] also uses the same technique in the context of lattice polymer models, which are somewhat

similar to ours through the connection between tree polymers and multiplicative cascades. However,

the main purpose of these papers is to use the dynamic weights technique to derive growth exponents
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and fluctuation behavior for partition functions of Gibbs measures as the size of the system grows large,

whereas we are more concerned with showing that the infinite volume measure-valued process has the

properties listed above.

We put particular emphasis on the results derived in Sections 1.4 and 1.5, where we specialize to the

case when logWt is a Brownian motion. This allows us to extend classical stochastic calculus results to

this infinite-dimensional setting and use them to describe the evolution of the measures. One of our long

term goals is to use these stochastic calculus techniques to compute explicit formulas for probability

densities of certain quantities related to the measure; for example the total mass at any fixed time.

We believe this is possible, but ultimately it will require more refined techniques that are beyond the

scope of the current result. Nonetheless, interesting results can already be derived using the stochastic

calculus that we develop, and in Section 1.5 we use it to show Hölder continuity of the measure process

in the Wasserstein distance. We also show that the optimal Hölder exponent is 1/2. Both are somewhat

surprising facts, since for any t 6= s the measures Γt and Γs are almost surely singular; hence the process

t 7→ Γt is very discontinuous in the total variation distance. Given this it is not immediately clear that

continuity can be expected in any topology stronger than the one induced by weak convergence, and our

result should be viewed in this context.

The outline of this chapter is as follows: in Section 1.2 we set up our notation and recall some well

known properties of cascade measures. In Section 1.3 we construct the process and show that it is

well-defined, and give proofs for the main results listed above. In Section 1.4 we discuss the special case

when the weight process is an exponential of a Brownian motion, and use stochastic calculus to describe

the infinitesimal evolution of the process. This shows one advantage of our construction over the more

abstract possibilities listed earlier: it allows for a full description of the evolution of the measure-valued

process in terms of the input weight process t 7→Wt(v). In Section 1.6 we describe possible applications

of our process to models of tree polymers and to the KPZ formula of one-dimensional random geometry.

1.2 Background and Notation

We begin with our notation for trees. Let T be a rooted infinite binary tree and denote the root by ς.

Given a vertex v ∈ T we let |v| be its generation, by which we mean its distance from the root. Let vL

and vR be the left and right offspring of v, respectively, and write vp for the parent of v. We let T (v) be

the subtree of T rooted at v. Note that when working on subtrees we still use |u| to denote the distance

from ς, not from the root of the subtree.

We will mostly be working on the boundary of T , which we denote by ∂T . Recall that ∂T is the set

of all infinite self-avoiding paths in the tree that begin at the root. Elements of ∂T are called rays and

are usually denoted by ξ. We denote by ξn the vertex in the nth generation of the ray ξ. Given two rays

ξ and ζ we let ξ ∧ ζ be the vertex of T that is the last common ancestor of ξ and ζ. For a given vertex

v ∈ T we let ∂T (v) be the set of all rays passing through v.

1.2.1 Measures on ∂T

Even though ∂T is an uncountable set, a measure on ∂T is completely determined by the countable

collection of values {Γ(∂T (v))}v∈T . Hence every positive, finite measure on ∂T can be identified with a

function Γ : T → R+ satisfying the two conditions
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• 0 < Γ(ς) <∞,

• for every vertex v ∈ T , Γ(v) = Γ(vL) + Γ(vR).

Due to this identification, measures on ∂T are also called flows on T . As long as 0 < Γ(ς) < ∞ it

is possible to normalize Γ to be a probability measure, i.e. so that Γ(ς) = 1. Sometimes we denote

the normalized measure by Γ∗, but in general we do not assume that we are working with probability

measures.

A special measure on ∂T is the “Lebesgue” measure given by θ(v) = 2−|v|. Observe that θ is also

the measure induced on ∂T by constructing random paths via simple random walk; that is, starting at

the root and then using independent and unbiased coin flips at each vertex to decide whether to move

left or right down the tree.

The topology on measures is as follows: we say that a sequence of measures Γn converges to Γ if

Γn(v) → Γ(v) for all v ∈ T . This is equivalent to weak convergence of Γn → Γ, when the topology on

∂T is generated by the metric

d(ξ, η) = θ(ξ ∧ η) = 2−|ξ∧η|.

For a vertex v ∈ T we will write Γ|v for the measure restricted to the subtree T (v).

1.2.2 Random Cascade Measures on ∂T

In this section we describe how to take a measure Γ on ∂T and a collection of random variables to

construct a cascade measure. Let W be a random variable that is positive almost surely and has mean

one. We are mostly concerned with its distribution which we call the cascading distribution. Assume

that W is not identically one, and therefore Jensen’s inequality implies that E [logW ] < 0.

Let {W (v)}v∈T be a collection of i.i.d. random variables with common distribution W . From this

collection we build a random function X : T → R+ defined by

X(ξn) =

n∏
i=1

W (ξi).

Then for each n ≥ 0 we construct a random measure Γ
(n)
W by specifying the Radon-Nikodym derivative

with respect to Γ as

dΓ
(n)
W (ξ) := X(ξn) dΓ(ξ).

The random cascade measure is then defined as the limit of Γ
(n)
W as n→∞. Recall that the topology is

pointwise in the vertices, meaning that

ΓW (v) = lim
n→∞

Γ
(n)
W (v) (1.2.1)

for every v ∈ T . A simple martingale argument, which we now recall, shows that the limit always exists.

First consider the case v = ς, so that

Γ
(n)
W (ς) =

∫
∂T

X(ξn)dΓ(ξ).
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It is easy to see that X(ξn) is a martingale with respect to the filtration

Wn := σ(W (v) : |v| ≤ n),

and therefore so is Γ
(n)
W (ς) by Fubini’s Theorem. Since Γ

(n)
W (ς) is positive it converges almost surely, and

since positivity of the limit does not depend on any finite collection of the W (v) variables a standard

0-1 law argument shows that the limit is almost surely zero or almost surely strictly positive. In the

case that Γ = θ Kahane and Peyriere [10] showed that

E [W logW ] < log 2

is a necessary and sufficient condition for the limit to be positive. In the case of a general measure Γ it

remains an open problem to determine sharp criterion for when ΓW (ς) > 0, but there are many known

sufficient conditions involving moment of W and the regularity of Γ. We will use a condition of Fan [7],

for which we need the following definitions:

Definition 1.2.1. For Γ a measure on ∂T , define the pressure function λΓ : [0,∞)→ R by

λΓ(h) := lim sup
n→∞

1

n
log

∑
|v|=n

Γ(v)h.

We will say that a measure Γ on ∂T is W -regular if

E [W logW ] + λ′Γ(1+) < 0.

We say that it is W -irregular if

E [W logW ] + λ′Γ(1−) > 0.

Observe that λΓ(1) = 0 for any Γ. Fan [7] uses the pressure function to derive the following condition:

Proposition 1.2.1 ([7]). Suppose there exists a δ > 0 with E
[
W 1+δ

]
<∞ for some δ > 0. Then

• if Γ is W -regular then ΓW (ς) > 0 almost surely,

• if Γ is W -irregular then ΓW (ς) = 0 almost surely.

Observe that if λΓ is differentiable at h = 1 then the condition of W -regularity is close to sharp. For

Γ = θ we have λθ(h) = (1− h) log 2, and hence the condition of Kahane and Peyriere is recovered.

Remark 1.2.2. Let W1 and W2 be two distinct cascading distributions, and suppose there is an ε > 0

such that E
[
Wh

1

]
≤ E

[
Wh

2

]
<∞ for h ∈ [1, 1 + ε]. Then since

E [W logW ] = lim
h↓0

E
[
Wh

]
− 1

h

it follows that E [W1 logW1] ≤ E [W2 logW2]. Hence W2-regularity of Γ implies W1-regularity of Γ.

Remark 1.2.3. The assumption of W -regularity implicitly means that λΓ is differentiable from the right

at h = 1.
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Remark 1.2.4. It is important to note that W -regularity of a measure is a property that is inherited

by all of its submeasures. Indeed, since λΓ is computed over a larger sum than λΓ|v , it follows that

λΓ(h) ≥ λΓ|v (h) for all h. But also λΓ(1) = λΓ|v (1) = 0, and therefore by the Mean Value Theorem

0 ≤ λΓ(1 + ε)− λΓ|v (1 + ε) = λ′Γ(1 + s)− λ′Γ|v (1 + s)

for some s ∈ (0, ε). Taking ε to zero gives

λ′Γ|v (1+) ≤ λ′Γ(1+),

which implies W -regularity of Γ|v.

Remark 1.2.5. We have only shown existence of the limit (1.2.1) in the v = ς case, and it is important

to note that this only required that Γ is a positive measure on ∂T . The regularity of Γ determines whether

the limit is positive or zero. But these facts and the self-similarity of the tree also combine to give us the

existence and positivity of the limit for v 6= ς. Indeed, assume n > |v|, so that

Γ
(n)
W (v) =

∫
∂T

X(ξn)1 {ξ ∈ ∂T (v)} dΓ(ξ)

= X(v)

∫
∂T (v)

X(ξn−|v|)

X(v)
dΓ|v(ξ). (1.2.2)

But the integral term is just the level n− |v| cascade of the Γ|v measure by the random variables W|v =

{W (u) : u ∈ T (v)}, hence the martingale argument for the v = ρ case also shows that its limit exists as

n → ∞. Its positivity can again be determined by Fan’s condition, and by the last remark W -regularity

is inherited by all submeasures. Thus if Γ is W -regular then ΓW (v) > 0 for all v ∈ T with Γ(v) > 0.

Taking the limit as n→∞ in equation (1.2.2) gives the relation

ΓW (u)

X(v)
= C

(
Γ|v;W|v

)
(u) (1.2.3)

for all u ∈ T (v).

Finally we remark that even though the limits in (1.2.1) are defined pointwise at each vertex, the

limiting object ΓW is automatically a measure on ∂T . This follows from the definition of the level n

cascade as a measure, and therefore

Γ
(n)
W (v) = Γ

(n)
W (vL) + Γ

(n)
W (vR).

Now take limits as n→∞.

1.2.3 Rates of Convergence for the Cascading Procedure

Our analysis in this section relies on that in [[7]]. In particular we will need to assume that the cascade

variable W satisfies a moment constraint and that the measure Γ is W -regular.

Assumption 1. We assume that

• There is a δ > 0 such that E
[
W 1+δ

]
<∞.
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• The measure Γ is W -regular.

These assumptions allow for exponential control on the decay of the cascade measure.

Definition 1.2.2. Define

α(h) := α(h;W,Γ) = lim sup
n→∞

1

n
log

∑
|v|=n

Γ(v)hE
[
X(v)h

]
= λΓ(h) + log E

[
Wh

]
.

The moment assumption on W implies that α(h) < ∞ for h in a neighborhood of 1. Since α(1) = 0 it

is straightforward to compute that Γ being W -regular implies that α′(1+) < 0, and therefore α(1 + ε) <

α(1) = 0 for ε sufficiently small. Therefore we also define

hW := sup{h ≥ 1 : α(h) < 0},

and by the last remarks we have hW > 1 under Assumption 1.

Much of our analysis will rely on having a rate of convergence of Γ
(n)
W to ΓW . We will heavily make

use of the following lemma:

Lemma 1.2.6. For 1 ≤ h ≤ 2 there is a positive constant C = C(h) such that

∣∣∣∣∣∣Γ(n+1)
W (ς)− Γ

(n)
W (ς)

∣∣∣∣∣∣
Lh
≤ C||W ||n+1

Lh

∑
|v|=n

Γ(v)h

1/h

,

and therefore by the triangle inequality

∣∣∣∣∣∣ΓW (ς)− Γ
(n)
W (ς)

∣∣∣∣∣∣
Lh
≤ C

∑
m>n

||W ||mLh

 ∑
|v|=m

Γ(v)h

1/h

.

The proof relies on the following inequality of von Bahr and Esseen:

Lemma 1.2.7 ([20]). Let {Ui} and {Vi} be sequences of random variables that are independent of each

other. Also assume that the {Vi} are mutually independent, and that E [Vi] = 0 for all i. Then for

1 ≤ h ≤ 2 there is a universal constant c = c(h) such that

E

(∑
i

UiVi

)h ≤ c∑
i

E
[
Uhi
]
E
[
V hi
]
.

Proof of Lemma 1.2.6. We have the trivial identity

Γ(n+1)(ς)− Γ(n)(ς) =

∫
(X(ξm+1)−X(ξm)) dΓ(ξ)

=

∫
X(ξm)(W (ξm+1)− 1) dΓ(ξ)

=
∑

|v|=m+1

Γ(v)X(vp)(W (v)− 1).
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The von Bahr-Esseen inequality applies to the latter sum, and therefore

E

[∣∣∣Γ(n+1)
W (ς)− Γ

(n)
W (ς)

∣∣∣h] ≤ c(h)
∑
|v|=n+1

Γ(v)hE
[
Wh

]n
E
[
|W − 1|h

]
≤ 2c(h)E

[
Wh

]n+1 ∑
|v|=n+1

Γ(v)h.

The next lemma implies the Lh convergence of the total mass of the cascade measure, and therefore

that ΓW (ς) > 0 almost surely.

Corollary 1.2.8. Under Assumption 1 we have that for all h ∈ (1, hW ),

lim sup
n→∞

1

n
log E

[
|ΓW (ς)− Γ

(n)
W (ς)|h

]
≤ λΓ(h) + log E[Wh] < 0.

Proof. Since Γ is W -regular, by Definition 1.2.2 for all h ∈ (1, hW ), α(h) = λΓ(h) + log E
[
Wh

]
< 0.

Hence for each γ > 0 such that α(h) + γ < 0 there is a positive constant C such that∑
|v|=n

Γ(v)hE
[
X(v)h

]
≤ Cen(α(h)+γ)

for all n. Applying the second statement of Lemma 1.2.6 completes the proof.

We now extend Corollary 1.2.8 to show that the exponential rate of convergence is uniform for all

vertices on a fixed generation of the tree.

Lemma 1.2.9. Under Assumption 1 we have that for h ∈ (1, hW ) and for 1 ≤ i ≤ n

lim sup
n→∞

1

n
log

∑
|v|=i

E

[∣∣∣ΓW (v)− Γ
(n)
W (v)

∣∣∣h] ≤ λΓ(h) + log E
[
Wh

]
< 0.

And moreover,

lim sup
n→∞

1

n
log

n∑
i=1

∑
|v|=i

E

[∣∣∣ΓW (v)− Γ
(n)
W (v)

∣∣∣h] ≤ λΓ(h) + log E[Wh] < 0.

Proof. From (1.2.2) we have, for |v| = i ≤ n,

Γ
(n)
W (v) = X(v)C

(
Γ|v;W|v

)(n−i)
(v).

Combining this with (1.2.3) and using that X(v) is independent of the cascade on T (v) gives

E
[
|ΓW (v)− Γ

(n)
W (v)|h

]
= E

[
X(v)h

]
E

[∣∣∣C(Γ|v;W|v)(v)− C(Γ|v;W|v)(n−i)(v)
∣∣∣h] .
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Applying Lemma 1.2.6 to the second factor and combining with the first factor gives

E
[
|ΓW (v)− Γ

(n)
W (v)|h

]
≤ C

 ∑
k>n−i

 ∑
w∈T (v)
|w|=|v|+k

Γ(w)hE
[
Wh

]|v|+k


1/h

h

, (1.2.4)

where C depends only on h. Now define ak(v) by

ak(v) =
∑

w∈T (v)
|w|=|v|+k

Γ(w)hE
[
Wh

]|v|+k

and an(v) = (an+1(v), an+2(v), an+3(v), . . .). Then equation (1.2.4) is equivalent to

E
[
|ΓW (v)− Γ

(n)
W (v)|h

]
≤ C||an−i(v)||`1/h ,

with `1/h denoting the usual sequence space. Summing over |v| = i gives

∑
|v|=i

E
[
|ΓW (v)− Γ

(n)
W (v)|h

]
≤ C

∑
|v|=i

||an−i(v)||`1/h ≤ C

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|v|=i

an−i(v)

∣∣∣∣∣∣
∣∣∣∣∣∣
`1/h

. (1.2.5)

The last inequality is the Minkowski inequality for `1/h (recall h ≥ 1). By definition of a we have∑
|v|=i

an−i(v) = (an+1(ς), an+2(ς), an+3(ς), . . .) = an(ς). (1.2.6)

By definition of α(h) we have, for each γ > 0,

an(ς) =
∑
|v|=n

Γ(v)hE
[
Wh

]n ≤ en(α(h)+γ)

for n sufficiently large. Under Assumption 1 and using Remark 1.2.2 we have α(h) < 0 for h ∈ (1, hW ).

Choosing γ such that α(h) + γ < 0, this gives

||an(ς)||`1/h ≤ Cen(α(h)+γ)

for n sufficiently large. Combining this with (1.2.5) and (1.2.6) and sending γ to zero gives the first

statement of the lemma. For the second part, simply observe that by (1.2.5) we have

n∑
i=1

∑
|v|=i

E
[
|ΓW (v)− Γ

(n)
W (v)|h

]
≤ Cn||an(ς)||`1/h .

This easily implies a uniform control of some moment of the cascade measure over all the vertices v

in the tree.
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Corollary 1.2.10. Under Assumption 1 we have that for all h ∈ (1, hW )

lim sup
n→∞

1

n
log

∑
|v|=n

E
[
|ΓW (v)|h

]
≤ λΓ(h) + log E

[
Wh

]
< 0

Proof. From the inequality |a+ b|h ≤ 2h(|a|h + |b|h) we have

E
[
ΓW (v)h

]
≤ 2h

(
E
[
|ΓW (v)−X(v)Γ(v)|h

]
+ Γ(v)hE

[
X(v)h

])
.

Summing over |v| = n and taking logarithms we get

lim sup
n→∞

1

n
log

∑
|v|=n

E
[
ΓW (v)h

]
≤ lim sup

n→∞

1

n
log

∑
|v|=n

(
E
[
|ΓW (v)−X(v)Γ(v)|h

]
+ Γ(v)hE

[
X(v)h

])
≤ λΓ(h) + log E

[
Wh

]
.

The last inequality is a consequence of the fact that the two terms in the line above both have the same

exponential rate of decay, which is itself a consequence of Lemma 1.2.9.

1.3 A Markovian Random Cascade Process

1.3.1 Dynamic Random Weights

The main idea of this work is to replace the random weights W on the vertices of the tree with random

weight processes t 7→Wt that evolve in time. As usual we require a moment of the cascade variable Wt

as well as regularity of the measure Γ. To this we also add an independence condition. Throughout we

assume the following properties of the weight processes and the initial measure Γ.

Assumption 2. The weight process t 7→Wt is defined in an interval [0, T ] with T > 0, and

• there is a δ > 0 such that E
[
W 1+δ
T

]
<∞,

• the measure Γ is WT -regular.

• W0 = 1,

• Wt > 0 and E [Wt] = 1 for each t ≥ 0,

• t 7→ logWt has independent increments.

Remark 1.3.1. Observe that for p > 1

E [W p
T ] = E [W p

t ] E

[
WT

Wt

]p
≥ E [W p

t ] ,

and so, by Remark 1.2.2, the moment and regularity assumptions are inherited for Wt with t < T .

Such processes are easy to construct, for example exponentials of Brownian motion or exponentials

of Levy processes (both properly normalized so that E [Wt] = 1). Note, however, that in both of these
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examples the increments of logWt are stationary, but that our results do not require this. For s, t ≥ 0

we define

Wt,t+s :=
Wt+s

Wt
.

The independent increments assumption gives that Wt,t+s is independent of Wt. Moreover the process

t 7→Wt is a martingale, that is

E [Wt|σ(Wr : r ≤ s)] = Ws.

Now to each vertex v ∈ T attach a copy Wt(v) of this process such that the collection {Wt(v)}v∈T
is independent. The main idea of this work is to use the cascading procedure of the last section to

construct a random cascade measure ΓWt
at each time t ≥ 0, and then show that the resulting process

t 7→ ΓWt
is Markovian. This is carried out in Section 1.3.3, and the rest of the work studies properties

of the process. To simplify notation we write

Γt := ΓWt
= C(Γ;Wt).

Observe that Γ0 = Γ. We also define functions Xt,t+s : T → R+ by

Xt,t+s(ξn) =

n∏
i=1

Wt,t+s(ξi),

and the filtrations

Wt = σ (Ws(v) : v ∈ T , s ≤ t) , Ft = σ (Γs(v) : v ∈ T , s ≤ t) .

In general Ft ⊂ Wt and the inclusion in strict, since by knowing the weights one can construct the

measure, but knowing the measure does not generally give full information on the weights.

To simplify notation, we will often drop references to the weights Wt or the initial measure Γ.

Definition 1.3.1. For t ∈ [0, T ], let

αt(h) := lim sup
n→∞

1

n
log

∑
|v|=n

Γ(v)hE
[
Xt(v)h

]
= λΓ(h) + log E

[
Wh
t

]
.

Furthermore let

ht := sup{h ≥ 1 : such that αt(h) < 0}.

Remark 1.3.2. Under Assumption 2, ht > 1 for t ∈ [0, T ]. Further note that ht is decreasing with t.

1.3.2 Construction and Basic Properties of the Process

Before proving that the t 7→ Γt process is Markov we first deal with a technical issue. Above we said that

we construct the process t 7→ Γt by applying the random cascading procedure of Section 2 at each fixed

time t. However the existence of the random cascade measure is only an almost sure statement, and the

event that it does not exist could conceivably depend on t. Since we are now working in continuous time
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it is possible that there is an exceptional set of times for which the cascade does not exist, which would

leave our cascade process ill-defined. We begin by showing that this is not the case.

To this end first note that for each n > 0 the finite level measure processes t 7→ Γ
(n)
t are well-defined,

and in fact are martingales in t with respect to the filtration Wt. Indeed

E
[
dΓ

(n)
t+s(ξ)|Wt

]
= Xt(ξn)dΓ(ξ)E [Xt,t+s(ξn)] = dΓ

(n)
t (ξ),

by the fact that Xt,t+s is independent of Wt and has mean one. We will show that this martingale

property, together with the exponential Lp convergence of the finite level measures, gives that the Γt

process is well-defined. Moreover, the martingale property of the finite level measures is inherited by

the limit.

Theorem 1.3.3. Under Assumptions 2, the event{
lim
n→∞

Γ
(n)
t (v) exists for all v ∈ T , t ≤ T

}
has probability one. Moreover,

1. for each v ∈ T the process t 7→ Γt(v) is a martingale with respect to Wt, and hence Ft, and,

2. if the weight process t 7→Wt is continuous then so is Γt(v) for each v ∈ T .

Proof. We concentrate first on the case v = ς. Fix h ∈ (1, hT ). Since the difference Γ
(n+1)
t (ς)− Γ

(n)
t (ς)

is a martingale in t (with respect to the filtration Wt), we may apply Doob’s maximal Lh inequality to

get that

P

(
sup

0≤t≤T
|Γ(n+1)
t (ς)− Γ

(n)
t (ς)| > βn

)
≤ β−nhE

[
sup

0≤t≤T
|Γ(n+1)
t (ς)− Γ

(n)
t (ς)|h

]
≤ β−nh

(
h

h− 1

)h
E
[
|Γ(n+1)
T (ς)− Γ

(n)
T (ς)|h

]
≤ Cβ−nhE

[
Wh
T

]n ∑
|v|=n

Γ(v)h,

with the last inequality coming from Lemma 1.2.6. Therefore by taking logarithms we get

lim sup
n→∞

1

n
logP

(
sup

0≤t≤T
|Γ(n+1)
t (ς)− Γ

(n)
t (ς)| > βn

)
≤ −h log β + αT (h).

As αT (h) < 0, we can pick β < 1 so that the right hand side is less than zero. Now Apply Borel-Cantelli

to conclude that Γ
(n)
t (ς) is a Cauchy sequence in n, with a rate of convergence that is uniform in t. This

proves the first part of the theorem.

To prove the martingale property, simply note that by Corollary 1.2.8 there is an h > 1 such that

Γ
(n)
t (ς) converges to Γt(ς) in Lh, and hence in L1. Thus for A ∈ Ws

E [(Γt+s(ς)− Γt(ς))1A] = lim
n→∞

E
[
(Γ

(n)
t+s(ς)− Γ

(n)
t (ς))1A

]
= 0,

with the last equality using the martingale property of the finite level measure process. This proves that

Γt is a martingale with respect to Wt, but since Ft ⊂ Wt and Γt is Ft-measurable, it is automatically a

martingale with respect to Ft also.
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For the continuity statement observe that if Wt is continuous then so is Γ
(n)
t (ς), since it is a finite

product and sum of continuous functions. The Borel-Cantelli argument above gives continuity of Γt(ς)

by completeness of C([0, T ]) under the sup norm.

Finally, if v 6= ς then the proofs above are easily extended by noting that WT -regularity is inherited

by the submeasures Γ|v (see Remark 1.2.4). The simple relation Γt(v) = Xt(v)C(Γ|v,Wt)(v) finishes the

argument, and since there are only countably many vertices on the tree the proof is completed.

1.3.3 The Markov Property

In this section we show that the Γt process has the Markov property. For a given weight process Wt

on [0, T ], let MT be the space of measures Γ that satisfy Assumption 2. The Markov property can be

formally stated by saying that for any bounded, measurable F :MT → R we have

E [F (Γt+s)| Ft] = E [F (Γt+s)|Γt] ,

for s, t ≥ 0 such that s + t ≤ T . By a density argument it is sufficient to consider the functions of the

form Fv(Γ) = Γ(v) for v ∈ T . For these functions we will actually prove the stronger statement

E [Fv(Γt+s)|Wt] = E [Fv(Γt+s)|Γt] ,

the difference between the two being that Wt is a coarser σ-algebra than Ft. Since the weight processes

s 7→Wt,t+s are independent of Wt, it is sufficient to prove the following:

Theorem 1.3.4. Under Assumptions 2, for fixed s, t ≥ 0 such that t+ s ≤ T , we have with probability

one that

Γt+s = C (Γt;Wt,t+s) .

Proof. We will show that for every v in T ,

Γt+s(v) = C(Γt;Wt,t+s)(v). (1.3.1)

We first concentrate on the case v = ς. Note that both sides of equation (1.3.1) are defined as limits,

and it suffices to prove that

lim
n→∞

C(Γt;Xt,t+s)
(n)(ς)− Γ

(n)
t+s(ς) = 0. (1.3.2)

We will show that the left hand side of (1.3.2) goes to zero in Lh for any h ∈ (1, hT ), and therefore the

a.s. limit must be zero as well. Fix h ∈ (1, hT ) and recall that

C(Γt;Xt,t+s)
(n)(ς) =

∑
|v|=n

Γt(v)Xt,t+s(v) =
∑
|v|=n

Γt(v)

Xt(v)
Xt+s(v).
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The last equality follows since XtXt,t+s = Xt+s by construction. Therefore, by definition of Γ
(n)
t+s,

C(Γt;Xt,t+s)
(n)(ς)− Γ

(n)
t+s(ς) =

∑
|v|=n

(
Γt(v)

Xt(v)
− Γ(v)

)
Xt+s(v).

Now note that the random variables {Γt(v)/Xt(v) − Γ(v) : |v| = n} are mean zero, and each depends

only on the Wt weights in the subtree T (v). Hence they are independent of each other and of all the

weight processes t 7→Wt(v) with |v| ≤ n. In particular each Xt+s(v), for |v| = n, is independent of these

random variables. Thus we can apply the von Bahr-Esseen inequality to the difference above to get

E

[∣∣∣C(Γt;Xt,t+s)
(n)(ς)− Γ

(n)
t+s(ς)

∣∣∣h] ≤ ∑
|v|=n

E
[
Xt+s(v)h

]
E

[∣∣∣∣ Γt(v)

Xt(v)
− Γ(v)

∣∣∣∣h
]

=
∑
|v|=n

E
[
Xt,t+s(v)h

]
E
[
|Γt(v)−Xt(v)Γ(v)|h

]
.

Recognizing that Xt(v)Γ(v) = Γ
(n)
t (v) and applying Lemma 1.2.9 finishes the proof, since for h ∈ (1, hT )

we have

lim sup
n→∞

1

n
log E

[∣∣∣C(Γt;Xt,t+s)
(n)(ς)− Γ

(n)
t+s(ς)

∣∣∣h] ≤ log E
[
Wh
t,t+s

]
+ λΓ(h) + log E

[
Wh
t

]
= λΓ(h) + log E

[
Wh
t+s

]
≤ αT (h)

< 0.

The second inequality follows from Remark 1.3.1, and the last is by the WT -regularity of Γ.

The proof for v 6= ς is similar, with all sums in the above statements being replaced with sums over

the appropriate subtrees, and by making use of the fact that Γ|v is WT -regular for all v. Finally, since

there are only countably many vertices on the tree the statement holds for all vertices simultaneously.

Note that Theorem 1.3.4 assumes nothing about the regularity of Γt, even though we applied the

cascading procedure to it. Theorem 1.3.4 gives that C(Γt,Wt,t+s) is indeed a non-trivial measure since

it is equal to Γt+s, which was already known to be non-trivial by the WT -regularity of the original

measure Γ. However, the regularity condition is only a sufficient one, and so the fact that C(Γt,Wt,t+s)

is non-trivial does not imply that Γt is Wt,T regular. This regularity statement is true, however, and

we will now prove it. In some sense this gives a classification of the state space of the Markov process:

each Γt lives in the space of Wt,T -regular measures, which is itself contained in the space of WT -regular

measures.

Lemma 1.3.5. Under Assumptions 2, the measures Γt are Wt,T -regular for each t ≤ T .

Proof. From Corollary 1.2.10, for h ∈ (1, hT ), we get that

lim sup
n→∞

1

n
log

∑
|v|=n

E
[
Γt(v)h

]
≤ αt(h) < αT (h) < 0.
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Therefore an application of Borel-Cantelli implies that

λΓt(h) = lim sup
n→∞

1

n
log

∑
|v|=n

Γt(v)h ≤ λΓ(h) + log E
[
Wh
t

]
with probability one. This gives that

λΓt(h) + log E
[
Wh
t,T

]
≤ λΓ(h) + log E

[
Wh
t

]
+ log E

[
Wh
t,T

]
= λΓ(h) + log E

[
Wh
T

]
for all h ∈ (1, hT ). Now apply the Mean Value Theorem and take h ↓ 1 to finish the proof.

1.4 Gaussian Weight Processes

The simplest case of weights satisfying Assumption 2 is an exponential of a Brownian motion, properly

normalized. In this section we study some extra properties of the random cascade process with these

weights; specifically we derive stochastic calculus formulas for the evolution of the measures as driven

by the Brownian noise. We restrict ourselves to the simplest case when t 7→ logWt has stationary

increments, so that

Wt(v) = exp {Bt(v)− t/2} ,

where {Bt(v)}v∈T is a collection of independent Brownian motions with B0(v) = 0. Since the Wt

variables have moments of all orders for all t ≥ 0, we only need to assume that the initial measure Γ is

WT -regular for some T > 0. It is easy to compute that

E [Wt logWt] = − t
2
,

so therefore the cascade process is well-defined on [0,−2λ′Γ(1+)). It is straightforward to verify from the

definition of λΓ that −2λ′Γ(1+) is maximal when Γ = θ, and this maximum value is 2 log 2. Moreover,

for any T < −2λ′Γ(1+), Assumptions 2 are satisfied and hence the t 7→ Γt process is always defined

on a finite time interval. By Theorems 1.3.3 and 1.3.4 the process is Markovian, and t 7→ Γt(v) is a

continuous martingale for each v ∈ T . Since

Xt(ξn) = exp

{
n∑
i=1

Bt(ξn)− nt/2

}
,

it is easy to compute that

dXt(ξn)

Xt(ξn)
=

n∑
i=1

dBt(ξi).

Therefore

dΓ
(n)
t (ς) =

∫
∂T

Xt(ξn)

(
n∑
i=1

dBt(ξn)

)
dΓ(ξ) =

n∑
i=1

∫
∂T

dBt(ξi)dΓ
(n)
t (ξ). (1.4.1)

This leads to the following result:
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Proposition 1.4.1. The total mass Γt(ς) evolves according to the stochastic differential equation

dΓt(ς) =

∞∑
i=1

∫
∂T

dBt(ξi) dΓt(ξ) =

∞∑
i=1

EΓt [dBt(ξi)] =
∑
v∈T
v 6=ς

Γt(v) dBt(v), (1.4.2)

where all stochastic differentials are understood in the Itô sense. Equivalently

dΓt(ς)

Γt(ς)
=

∞∑
i=1

EΓ∗t
[dBt(ξi)] =

∑
v∈T
v 6=ς

Γ∗t (v) dBt(v),

where Γ∗t is Γt normalized to be a probability measure. The quadratic variation of the latter process is

d
〈

Γt(v),Γt(v)
〉

Γt(v)2
=

∞∑
i=1

EΓ∗t×Γ∗t
[1 {ξi = ξ′i}] =

∑
v∈T
v 6=ς

Γ∗t (v)2 =
∑
v∈T
v 6=ς

(
Γt(v)

Γt(ς)

)2

.

Before proceeding with the proof we first note that all of the stochastic integrals∫ t

0

Γ(n)
s (v) dBs(v),

∫ t

0

Γs(v) dBs(v)

are well-defined on [0, T ]. Both integrands are clearly progressively measurable, and as they are con-

tinuous local martingales in time their supremum is almost surely finite on the compact interval [0, T ].

Hence ∫ T

0

Γ(n)
s (v)2 ds <∞ and

∫ T

0

Γs(v)2 ds <∞

with probability one, which is exactly what is required for the integrals to make sense. Note, however,

that the expectations of the latter integrals will not necessarily be finite for all T .

Proof. By the definition of Γt(ς) as the limit of Γ
(n)
t (ς), and computing the difference between (1.4.1)

and (1.4.2), it is sufficient to show that the process

t 7→
n∑
i=1

∑
|v|=i

∫ t

0

(
Γs(v)− Γ(n)

s (v)
)
dBs(v) +

∞∑
i=n+1

∑
|v|=i

∫ t

0

Γs(v) dBs(v) (1.4.3)

goes to zero in some sense as n→∞. We will show that the supremum over [0, T ] goes to zero almost

surely. Our main tool will be the Burkholder-Davis-Gundy inequality, see [18, Ch. IV, Corollary 4.2]

for details.

As the quadratic variation of the first summation in (1.4.3) is

Qt :=

n∑
i=1

∑
|v|=i

∫ t

0

(
Γs(v)− Γ(n)

s (v)
)2

ds,
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the BDG inequality gives us that for h > 0 there is a constant Ch > 0 such that

E

 sup
0≤t≤T

∣∣∣∣∣∣
n∑
i=1

∑
|v|=i

∫ t

0

(
Γs(v)− Γ(n)

s (v)
)
dBs(v)

∣∣∣∣∣∣
h
 ≤ ChE [Qh/2t

]
.

Choose h ≤ 2 so that, by subadditivity and a supremum bound on the integral terms, the right hand

side is bounded above by

ChT
h/2

n∑
i=1

∑
|v|=i

E

[
sup

0≤t≤T
|Γt(v)− Γ

(n)
t (v)|h

]
.

Now by choosing h > 1, Doob’s maximal inequality gives that this is further bounded above by

C∗hT
h/2

n∑
i=1

∑
|v|=i

E
[
|ΓT (v)− Γ

(n)
T (v)|h

]
.

By Lemma 1.2.9 the latter term goes to zero exponentially fast as n → ∞, and then Borel-Cantelli

completes the proof.

For the second summation of (1.4.3), the same argument with the BDG inequality yields that

E

 sup
0≤t≤T

∣∣∣∣∣∣
∞∑

i=n+1

∑
|v|=i

∫ t

0

Γs(v) dBs(v)

∣∣∣∣∣∣
h
 ≤ C∗hTh/2 ∞∑

i=n+1

∑
|v|=i

E
[
ΓT (v)h

]
. (1.4.4)

From the proof of Lemma 1.3.5 we have that

lim sup
n→∞

1

n
log

∑
|v|=n

E
[
ΓT (v)h

]
≤ λΓ(h) + log E

[
Wh
T

]
< 0

for h sufficiently close to 1, and hence by (1.4.4) and the Borel-Cantelli lemma the second summation

of (1.4.3) term goes to zero almost surely.

Using equation (1.2.3) this leads to the following formulas for the evolution at other vertices:

Corollary 1.4.2. For v ∈ T the mass Γt(v) evolves as

dΓt(v)

Γt(v)
=

n∑
i=1

dBt(vi) +
∑

u∈T (v)
u 6=v

Γt(u)

Γt(v)
dBt(u),

where ς = v0, v1, v2, . . . , vn = v are the vertices from the root to v. In particular this gives that if u is

not a descendant of v or vice-versa then

d
〈

Γt(u),Γt(v)
〉

Γt(u)Γt(v)
= |u ∧ v| dt,

where u ∧ v is the last common ancestor of the paths to u and v.

Proposition 1.4.1 says that the total mass evolves as a continuous time exponential martingale. Its
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logarithm accumulates quadratic variation at a rate given by the last expression of Proposition 1.4.1,

and, as is well known, the time at which an exponential martingale hits zero is equivalent to the time

at which the accumulated quadratic variation reaches infinity. This gives another interpretation of the

lifetime of the Γt process:

Corollary 1.4.3. The Γt process reaches the zero measure at exactly the time

sup

t ≥ 0 :

∫ t

0

∑
v∈T
v 6=ς

(
Γs(v)

Γs(ς)

)2

ds <∞

 .

Before this time, that the total mass process is an exponential martingale naturally suggests the

Girsanov theory plays a role here. This leads to the following:

Corollary 1.4.4. Let P be the measure under which the vertex processes {Bt(v)}v∈T are independent

Brownian motions. Assume that Γ is a probability measure. For any T ′ < T , let P̃T ′ be the probability

measure whose Radon-Nikodym derivative with respect to P is ΓT ′(ς). Then under P̃T ′ the processes{
t 7→ Bt(v)−

∫ t

0

Γs(v) ds, 0 ≤ t ≤ T ′
}
v∈T

are independent Brownian motions on the tree vertices.

See [18] for background on the Girsanov theory. In Section 1.6 we describe an application of this

result to the model of tree polymers.

1.5 Hölder Continuity

This section highlights an interesting application of the SDE results derived in the previous section.

Once again we will assume that the weight processes are

Wt(v) = exp {Bt(v)− t/2} ,

where {Bt(v)}v∈T is a collection of independent Brownian motions with B0(v) = 0. Recall from Section

1.4 that Γt is a well defined measure-valued process on the time interval [0,−2λ′Γ(1+)). Using techniques

from stochastic analysis we will show that this process Γt is α-Hölder in the Wasserstein metric for any

α < 1/2. This gives an interesting juxtaposition of discontinuity and continuity. On the one hand,

the measures Γt and Γs are mutually singular for t 6= s, and hence are very discontinuous in the total

variation distance. However at the same time, they satisfy a very strong continuity condition in the

Wasserstein metric on probability measures on the tree.

Definition 1.5.1. The Wasserstein distance between any two probability measures µ and ν on ∂T is

defined as

dW (µ, ν) := inf
ρ∈Λ(µ,ν)

∫
∂T ×∂T

d(ζ, η)dρ(ζ, η),

where Λ(µ, ν) is the collection of all couplings of the measures µ, ν. Recall that the distance function is

d(ζ, η) = 2−|ζ∧η|.
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Note that this is a metric on probability measures on ∂T . Our main result in this section applies to

the normalized process Γ̃t := Γt/Γt(ς).

Theorem 1.5.1. Let T < −2λ′Γ(1+). Then for any α < 1/2, the process Γ̃t, 0 ≤ t ≤ T , is α-Hölder

continuous in the Wasserstein metric.

The main step in the proof is to show Hölder continuity of each of the processes Γt(v), for v ∈ T ,

along with a bound on the Hölder constant.

Theorem 1.5.2. Let T < −2λ′Γ(1+). Then for any v ∈ T , the processes Γt(v) are α-Hölder continuous

on [0, T ] for any α < 1/2. Moreover, there is a γ < 1 such that,

sup
v∈T

sup
0≤s<t≤T

γ−|v|
|Γt(v)− Γs(v)|
|t− s|α

<∞

almost surely.

We use the following version of the Kolmogorov-Chentsov Theorem, which gives a bound on the

magnitude of the Hölder constant. For a statement of this theorem see [12, Theorem 2.2.8]. The

statement on the control of the Hölder constant is implicit in their proof.

Theorem 1.5.3 (Kolmogorov-Chentsov Theorem). Let Xt be a continuous, stochastic process on [0, T ]

such that for all t, s ≤ T ,

E |Xt −Xs|p < Kp|t− s|p/2

for some p > 2 and some constant Kp. Then Xt is α-Hölder continuous for every α < 1/2 − 1/p.

Moreover,

P

(
sup

0≤s<t≤T

|Xt −Xs|
|t− s|α

> 1

)
≤ KpHα, (1.5.1)

where Hα is a constant depending only on α and T .

To prove Theorem 1.5.2 we restrict the process to a sequence of stopping times, prove Hölder con-

tinuity of these stopped process, and then take a limit. We construct these stopped processes in the

following lemma. Note that in this section, and this section only, the notation Γ
(N)
t refers to the stopped

version of the Γt process, not to the finite level cascade measure Γ
(n)
t as in all other sections.

Lemma 1.5.4. Let T < −2λ′Γ(1+). Then there is a γ < 1 and a sequence of measure-valued processes

Γ
(N)
t for N ∈ N, such that

1. P(Γ
(N)
t 6= Γt for some t ≤ T )→ 0 as N →∞,

2. for every v ∈ T , Γ
(N)
t (v) is α-Hölder on [0, T ] for any α < 1/2,

3. for α < 1/2, we have with probability one that,

sup
v∈T

sup
0≤s<t≤T

γ−|v|
|Γ(N)
t (v)− Γ

(N)
s (v)|

|t− s|α
<∞.
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Remark 1.5.5. Theorem 1.5.2 follows immediately from this lemma.

The processes Γ
(N)
t will be Γt stopped at an appropriate stopping time. We construct these stopping

times in the following lemma.

Lemma 1.5.6. For any T < −2λ′Γ(1+) there is a β < 1 and a sequence of stopping times τN with

P(τN < T )→ 0 as N →∞ such that,

sup
v∈T

sup
0≤t≤T

β−|v|Γt∧τN (v) ≤ CN,

for some constant C depending on Γ and β.

Proof. Fix T < −2λ′Γ(1+). Now recalling Definition 1.3.1 and Remark 1.3.2, we take h ∈ (1, hT ) and

note that αT (h) < 0. We can therefore choose β such that αT (h)/h < log β < 0; hence β < 1. Consider

the continuous, increasing processes

At(v) := β−|v| sup
0≤s≤t

Γs(v).

It follows from the continuity of Γt(v) that At(v) is bounded on [0, T ] for every v ∈ T . Now define

At := sup
v∈T

At(v). (1.5.2)

It follows from our choice of β and the definition of αT (h) that A0 is non-random and finite. Clearly At

is a non-decreasing process. Note that the statement of the lemma is equivalent to finding a sequence

of stopping times τN such that At∧τN ≤ A0 +N and with P(τN < T )→ 0 as N →∞. This will follow

from the fact that At is continuous on [0, T ], which we now show. Using Markov’s inequality as well as

Doob’s Lp inequality we get that

P (AT (v) ≥ A0 for some |v| = n) ≤ A−h0 β−nh
∑
|v|=n

E
[
ΓT (v)h

]
.

By Corollary 1.2.10 and the choice of β,

lim sup
n→∞

1

n
log P (AT (v) ≥ A0 for some |v| = n) ≤ −h log β + αT (h) < 0.

Therefore by Borel-Cantelli,

P

(
sup

0≤t≤T
At(v) ≥ A0 for only finitely many v ∈ T

)
= 1.

Take S = {v ∈ T : AT (v) ≥ A0} to be the (random) set of vertices from the tree at which this inequality

fails; clearly S is finite. Moreover, since the processes At(v) and At are non-decreasing in t, it follows

that the supremum in (1.5.2) can only be achieved at one of the vertices of S, i.e.

At = max
v∈S

At(v).

Hence At is itself continuous on [0, T ], since it is the maximum of a finite number of continuous processes.
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We then take

τN := inf {t ∈ [0, T ] : At > A0 +N}

to be our sequence of stopping times. The continuity of At implies that At∧τn ≤ A0+N as well as the fact

that At is almost surely bounded on [0, T ]. The boundedness on [0, T ] also gives that P(τN < T ) → 0

as N →∞.

Proving Lemma 1.5.4 now becomes an application of the Kolmogorov-Chentsov Theorem.

Proof of Lemma 1.5.4. First take β < 1 and τN as in Lemma 1.5.6 and define Γ
(N)
t := Γt∧τN to be the

stopped version of the measure-valued process. From Lemma 1.5.6, part (i) of this lemma is immediate.

Next, recall that by Corollary 1.4.2

dΓt(v) =

|v|∑
i=1

Γt(v) dBt(vi) +
∑

u∈T (v)
u 6=v

Γt(u) dBt(u).

Now fix v ∈ T , p > 2 and take any 0 ≤ s < t ≤ T . We apply the Burkholder-Davis-Gundy inequality,

use the bound on the process Γ
(N)
t from Lemma 1.5.6, and the fact that it is a flow on T to get

E
∣∣∣Γ(N)
t (v)− Γ(N)

s (v)
∣∣∣p ≤ E

 |v|∑
i=1

∫ t∧τn

s∧τn
Γr(v)2 dr +

∑
u∈T (v)
u6=v

∫ t∧τn

s∧τN
Γr(v)2 dr


p/2

≤ E

 |v|∑
i=1

CNβ|v|
∫ t∧τn

s∧τn
Γr(v) dr +

∞∑
k=1

∑
u∈T (v)
u=|v|+k

Nβ|u|
∫ t∧τn

s∧τN
Γr(u) dr


p/2

= E

(
|v|CNβ|v|

∫ t∧τn

s∧τn
Γr(v) dr +

∞∑
k=1

Nβ|v|+k
∫ t∧τn

s∧τN
Γr(v) dr

)p/2
.

Now again use the upper bound Γ
(N)
t (v) ≤ CNβ|v| and the fact that β < 1 to get the desired Kolmogorov-

Chentsov inequality,

E
∣∣∣Γ(N)
t (v)− Γ(N)

s (v)
∣∣∣p ≤ E

(
C2N2β2|v|(|v|+ Cβ)

∫
=t∧τN
s∧τN ds

)p/2
≤ CpNpβp|v|(|v|+ Cβ)p/2(t− s)p/2, (1.5.3)

where Cβ is a constant depending only on β. Since this inequality holds for every p > 2,we get that for

every v ∈ T , Γ
(N)
t (v) is α-Hölder continuous for any α < 1/2.

Finally, fix α < 1/2 and take γ ∈ (β, 1). The Lp bound (1.5.3), applied to the process γ−|v|Γ
(N)
t (v),

along with the Kolmogorov-Chentsov bound (1.5.1) gives that

P

(
sup

0≤s<t≤T
γ−|v|

|Γ(N)
t (v)− Γ

(N)
s (v)|

|t− s|α
> 1

)
< KN

p (v)Hα, (1.5.4)

where KN
p (v) = CpNp(β/γ)p|v|(|v|+Cβ)p/2. Notice that KN

p (v)→ 0 as p→∞, at least for all |v| > M
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where M > 0 depends on only β, γ, and N . Therefore, since (1.5.4) is true for every p > 2, it follows

that for all |v| > M we have

P

(
sup

0≤s<t≤T
γ−|v|

|Γ(N)
t (v)− Γ

(N)
s (v)|

|t− s|α
> 1

)
= 0,

which implies part (iii) of the lemma.

The last ingredient in the proof of Theorem 1.5.1 is the following upper bound on the Wasserstein

distance on M(T ).

Lemma 1.5.7. Let µ, ν ∈M(T ) be such that for every v ∈ T we have µ(v), ν(v) > 0. Then

dW (µ, ν) ≤
∑
k=1

2−k+1
∑
|v|=k−1

ν(v)

∣∣∣∣ν(vL)

ν(v)
− µ(vL)

µ(v)

∣∣∣∣ .
Proof. This follows from a particular, standard coupling ρ of the two measures µ and ν. Given a ray

ξ ∈ ∂T , we define the probability measure νξ on ∂T via the following iterative formula:

νξ(ηk|ηk−1) :=


ν(ηk)
ν(ηk−1) if ηk−1 6= ξk−1

pk(ξ) if ηk = ξk

1− pk(ξ) if ηk−1 = ξk−1 but ηk 6= ξk

where

pk(ξ) =

(
ν(ξk)

ν(ξk−1)

µ(ξk−1)

µ(ξk)

)
∧ 1.

We define the coupling dρ(ξ, η) = dµ(ξ)dνξ(η). In words the coupling is the following. We first sample a

ray ξ from µ. Then conditioned on ξ we sample η inductively. If η agrees with ξ on the first k− 1 steps

of the path (i.e., ηk = ξk), then flip a pk(ξ) coin to decide if η will agree with ξ on the k step. Once η

diverges from ξ, pick the rest of its path independently from ν.

It is a matter of simple calculation to show that this is a coupling. Since νξ is clearly a probability

measure on ∂T , it follows that the first marginal is µ. To compute that the second marginal is ν is

straightforward.

Let Ak(ξ) = {η ∈ ∂T : ηk−1 = ξk−1, ηk 6= ξk} be the event that η agrees with ξ exactly up to level

k. Hence d(ξ, η) = 2−k for η ∈ Ak(ξ). Furthermore

νξ(Ak(ξ)) =

k−1∏
i=1

pi(ξ) · (1− pk(ξ))

≤
k−1∏
i=1

ν(ξi)

ν(ξi−1)

µ(ξi−1)

µ(ξi)
·
∣∣∣∣1− ν(ξk)

ν(ξk−1)

µ(ξk−1)

µ(ξk)

∣∣∣∣
=
ν(ξk−1)

µ(ξk−1)

∣∣∣∣1− ν(ξk)

ν(ξk−1)

µ(ξk−1)

µ(ξk)

∣∣∣∣
=
ν(ξk−1)

µ(ξk)

∣∣∣∣ ν(ξk)

ν(ξk−1)
− µ(ξk)

µ(ξk−1)

∣∣∣∣ .
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The first equality follows from the definition of νξ while the first inequality follows from the definition

of pi(ξ). A calculation now gives that

dW (µ, ν) ≤
∫
∂T ×∂T

d(ξ, η)dµ(ξ)dνξ(η)

=

∞∑
k=1

∫
∂T

∫
Ak(ξ)

d(ξ, η)dµ(ξ)dνξ(η)

=
∑
k=1

∫
∂T

2−kdµ(ξ)νξ(Ak(ξ))

≤
∑
k=1

2−k
∫
∂T

ν(ξk−1)

µ(ξk)

∣∣∣∣ ν(ξk)

ν(ξk−1)
− µ(ξk)

µ(ξk−1)

∣∣∣∣dµ(ξ)

=
∑
k=1

2−k
∑
|v|=k

ν(vp)

∣∣∣∣ν(vk)

ν(vp)
− µ(vk)

µ(vp)

∣∣∣∣ .
Recall that vp denotes the parent of v in T . Finally, noting that

∣∣∣ν(vL)
ν(v) −

µ(vL)
µ(v)

∣∣∣ =
∣∣∣ν(vR)
ν(v) −

µ(vR)
µ(v)

∣∣∣, gives

that ∑
|v|=k

ν(vp)

∣∣∣∣ν(vk)

ν(vp)
− µ(vk)

µ(vp)

∣∣∣∣ = 2
∑
|v|=k−1

ν(v)

∣∣∣∣ν(vL)

ν(v)
− µ(vL)

µ(v)

∣∣∣∣
which completes the proof.

We are finally ready to prove Theorem 1.5.1. It follows from Theorem 1.5.2 and Lemma 1.5.7.

Proof of Theorem 1.5.1. Let 0 ≤ s < t ≤ T and fix α < 1/2. Applying Lemma 1.5.7 to the measures Γ̃t

and Γ̃s gives

dW (Γ̃s, Γ̃t) ≤
∑
k=1

2−k+1
∑
|v|=k−1

Γs(v)

Γs(ς)

∣∣∣∣Γs(vL)

Γs(v)
− Γt(vL)

Γt(v)

∣∣∣∣
=

1

Γs(ς)

∑
k=1

2−k+1
∑
|v|=k−1

∣∣∣∣Γs(vL)Γt(vR)− Γs(vR)Γt(vL)

Γt(v)

∣∣∣∣ ,
where we have used the fact that Γt(v) = Γt(vL) + Γt(vR) for every t. Now note that by Theorem 1.5.2,

for every v ∈ T , |Γt(v) − Γs(v)| ≤ Cαγ
|v||t − s|α for some γ < 1. Therefore, adding and subtracting

Γt(vR)Γt(vL) gives

|Γs(vL)Γt(vR)− Γs(vR)Γt(vL)| ≤ Cαγ|v|+1Γt(v)|t− s|α.

This inequality along with the fact that Γs(ς) is bounded away from zero on [0, T ] leads to the α-Hölder

inequality in the Wasserstein metric,

dW (Γ̃s, Γ̃t) ≤
1

Γs(ς)

∑
k=1

2−k+1
∑
|v|=k−1

Cαγ
|v|+1|t− s|α

= C
′

α|t− s|α.

This result is optimal in the sense that Γ̃t is not α-Hölder for any α > 1/2 in the Wasserstein metric.
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This upper bound on the Hölder exponent follows from general arguments for martingales, which we

now briefly outline.

Theorem 1.5.8. For any interval [a, b] ⊂ [0,−2λ′Γ(1+)) and for any α > 1/2,

lim sup
ε→0

sup
a≤s≤t≤b
|t−s|≤ε

dW (Γ̃t, Γ̃s)

|t− s|α
=∞.

Proof. Define

f(ξ) =

1 if ξ1 = ςL

0 if ξ1 = ςR.

Since |f(ξ)− f(η)| ≤ d(ξ, η) for any two rays ξ, η ∈ ∂T , we have, using Jensen’s inequality, that for any

coupling ρ of two probability measures, µ and ν,∫
∂T ×∂T

d(ξ, η)dρ(ξ, η) ≥
∫
∂T ×∂T

|f(ξ)− f(η)|dρ(ξ, η)

≥
∣∣∣∣∫
∂T ×∂T

f(ξ)dρ(ξ, η)−
∫
∂T ×∂T

f(η)dρ(ξ, η)

∣∣∣∣
= |µ(ςL)− ν(ςL)|.

In particular, this implies that

dW (Γ̃t, Γ̃s) ≥
∣∣∣Γ̃t(ςL)− Γ̃s(ςL)

∣∣∣ .
So it remains to show that Γ̃t(ςL) is not α-Hölder for any α > 1/2. Both Γt(ςL) and Γt(ς) are non-zero

and continuous on [a, b] and so by Ito’s formula Γ̃t(ςL) is a continuous semi-martingale. We will use the

fact that a continuous semi-martingale whose quadratic variation is strictly increasing is not α-Hölder

for any α > 1/2 (see Lemma 1.5.9). For now we only verify that the quadratic variation is strictly

increasing. Since

Γ̃t(ςL) =
Γt(ςL)

Γt(ςL) + Γt(ςR)
,

by Ito’s formula the martingale part of dΓ̃t is

1

Γt(ς)2

(
Γt(ςR)dΓt(ςL)− Γt(ςL)dΓt(ςR)

)
.

From Proposition 1.4.1 it follows that d
〈
Γ̃t(ςL)

〉
6= 0.

For the sake of completeness we provide the following general fact from stochastic calculus that was

used in the proof of Theorem 1.5.8.

Lemma 1.5.9. Let Xt be a continuous semi-martingale, i.e. X = X0 +M+A where M is a continuous

local martingale, A a finite variation process, and M0 = A0 = 0. If the quadratic variation 〈X〉t is strictly

increasing on some interval [a, b], then for any α > 1/2 the process Xt is not α-Hölder continuous on

[a, b].
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Proof of Lemma 1.5.9. Note that for any β < 1 and t ∈ (a, b),

lim sup
s→t

|At −As|
|t− s|β

= 0.

So without loss of generality we can assume that A = 0 and that X is a local martingale. First consider

the case where there exists a non-random δ > 0 such that 〈X〉b − 〈X〉a > δ, with probability one. Fix

α > 1/2. We will show that Xt is not α-Hölder continuous. For n ∈ N and 1 ≤ i ≤ n, define the stopping

times

τni = inf
t

{
〈X〉t − 〈X〉a >

i

n
δ

}
.

Note that τnn < b and so by the Dubins-Schwarz Theorem,

(
Xτni+1

−Xτni
, i = 1, ..., n

)
d
=

(
B

(
i+ 1

n
δ

)
−B

(
i

n
δ

)
, i = 1, ...., n

)
,

where B(t) is a standard Brownian motion. Since E
∣∣B ( i+1

n δ
)
−B

(
i
nδ
)∣∣ 1
α = Cp

(
δ
2

) 2
α n−2α, the weak

law of large numbers gives that

n∑
i=1

∣∣∣∣B( i+ 1

n
δ

)
−B

(
i

n
δ

)∣∣∣∣ 1
α

→∞,

in probability. Let

An =

n⋃
i=1

{
|Xτni+1

−Xτni
| >

(
τni+1 − τni

)α}
be the event that Xt is not α-Hölder at level n. By the pigeonhole principle,

P (An) ≥ P

(
n∑
i=1

|Xτni+1
−Xτni

| 1α > (b− a)

)
.

The convergence of the right hand side to 1 gives that P (An i.o.) = 1. Finally, since 〈X〉t is strictly

increasing we have that with probability one sup1≤i≤n(τni+1−τni )→ 0 as n→∞. This finishes the proof

of this case.

Now consider the general case. For every ε > 0, we can find a δ > 0 and non-random a < T < b such

that P(〈X〉T − 〈X〉a > δ) ≥ 1− ε. Consider the process

M̃t =


Xt t ≤ TXt t > T , 〈X〉T − 〈X〉a ≥ δ

XT +B δ
b−T (t−T ) t > T , 〈X〉T − 〈X〉a < δ

Then X̃t is a continuous martingale with [X̃]b− [X̃]a > δ. Therefore X̃t is not α-Hölder for any α > 1/2

and so with probability greater than 1− ε neither is Xt. Since this is true for any ε this completes the

proof.
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1.6 Applications to Other Models

1.6.1 Tree Polymers

Although this work was written in the language of multiplicative cascades it was strongly motivated by

the literature on tree polymers. The polymer model is virtually identical but the language is mildly

different: to the vertices of the tree attach iid random variables {ω(v)}v∈T , and at inverse temperature

β and level n define the polymer measure on ∂T by

dΓ
(n)
ω,β(ξ) :=

1

Z
(n)
ω,β

n∏
i=1

exp {βω(ξi)} dΓ(ξ).

Here Z
(n)
ω,β is the partition function

Z
(n)
ω,β =

∫
∂T

dΓ
(n)
ω,β(ξ) = Γ

(n)
ω,β(ς).

In the tree polymer model we usually assume that Γ is a probability measure, and hence the partition

function normalizes the polymer measure to also have mass one. Typically only the Lebesgue measure θ

is used as the base measure, but we will continue to describe the model in this greater generality where

any Γ can be used. The only assumption on the ω is that eλ(β) := E
[
eβω
]
< ∞ for all β ∈ R. Clearly

then the polymer measure can be expressed as a cascade measure with

dΓ
(n)
ω,β(ξ) =

enλ(β)

Z
(n)
ω,β

dΓ
(n)
Wβ

(ξ) =
dΓ

(n)
Wβ

(ξ)

Γ
(n)
Wβ

(ς)
,

with Wβ(v) = exp {βω(v)− λ(β)}. If Γ is Wβ-regular then Section 1.2 shows that the limiting polymer

measure exists and is given by

lim
n→∞

dΓ
(n)
ω,β(ξ) =

dΓWβ
(ξ)

ΓWβ
(ς)

.

If Γ is not Wβ-regular it is still an open problem as to whether or not a limit exists. Subsequential limits

automatically exists because each finite level polymer measure is normalized to be a probability measure

and the tree boundary ∂T is compact, but the structure of the set of subsequential limits is not known.

See [22] for more on this problem.

Applying our cascade process to the study of polymer measures is most helpful whenever the family of

cascading distributions Wβ = exp {βω − λ(β)} can be represented by a process Wt satisfying Assumption

2. By this we mean that the processes Wβ and Wt have the same marginal distributions at fixed times (up

to a possible change of variables between β and t), but Wt has the independent increments property of

Assumption 2. In this case, the cascade process of Section 1.3 gives us a coupling of the polymer measures

at different temperatures that is different from the standard one obtained by simply multiplying the same

variables by a different factor. The advantage of our coupling is that it has the Markov property implied

by Section 1.3.3. In polymer language this Markov property has a nice interpretation: the polymer

measure at a given temperature can be constructed by choosing a polymer at any higher temperature

and then placing it in a new and independent environment. Most importantly, the higher temperature
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does not have to be infinite.

The simplest case of a weight process satisfying the above is the Gaussian weights of Section 1.4.

The scaling properties of Brownian motion imply that in this case the t variable acts as both a time and

an inverse temperature. This gives a nice interpretation to the stochastic calculus results of Proposition

1.4.1. The SDE for Γt(ς) tells us that the total mass at the root evolves according to a weighted measure

of the Brownian noise being inputted, with the weights prescribed by the polymer measure at the time

infinitesimally beforehand. The formula for the quadratic variation tells us that it evolves according

to the overlap of the polymer measure, that is the expected amount of time that two polymers paths

chosen independently under Γ∗t will spend together before eventually splitting. The explosion time of

the cascade process is exactly when the accumulated overlap reaches infinity.

The Girsanov theory is also useful in this context. The tree polymer model can be thought of as a

model of random walk in a random environment, where the random variables ω act as the environment.

For this part we assume that Γ = θ, and under the measure θ∗Wβ
the process ξ0, ξ1, ξ2, . . ., is Markov

with transition probabilities given by

θ∗Wβ
(ξi+1 = (ξi)L|ξ0, ξ1, . . . , ξi) =

θWβ
((ξi)L)

θWβ
(ξi)

.

To study this type of RWRE one typically uses the “point of view of the particle”, which is the study of

the environment Markov chain defined by

Zn = {ω(u)}u∈T (ξn).

Note that Zn takes values in the space of environments. It is straightforward to verify that if Q is a

measure under which the ω are iid random variables and ξ is chosen according to the polymer measure

θ∗Wβ
, then Zn is a stationary Markov process with the same transition probabilities as the ξi Markov

chain, i.e.

P
(
Zi+1 = {ω(u)}u∈T ((ξi)L)|Z0, . . . , Zi

)
= θ∗Wβ

(ξi+1 = (ξi)L|ξ0, ξ1, . . . , ξi) .

See [23] for more on the environment Markov chain. It begins in stationarity, with the stationary

distribution being θWβ
(ς) dQ(ω). The Girsanov theory of Corollary 1.4.4 gives a way to analyze this

stationary distribution. Assume that under Q the ω are iid N(0, T ′) for some T ′ < 2 log 2. Then under

θω(ς) dQ(ω) the variables ω have the law of

∫ T ′

0

θs(v)

θs(ς)
ds+ B̃T ′(v),

where the B̃t(v) are iid Brownian motions on the vertices of the tree. This gives an alternate description

of the stationary measure for the environment Markov Chain.

1.6.2 One-Dimensional Random Geometry and KPZ

Multiplicative cascades have also been used as a toy model for studies of random geometry, most notably

in [1]. There one considers the pushforward of ΓW onto the interval [0, 1] via binary expansion; left turns

in ξ correspond to zeros in the binary expansion and right turns to ones. We use ΓW to also denote the
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distribution function of the measure on [0, 1], i.e.

ΓW (x) = ΓW ([0, x]).

If ΓW is strictly positive, then ΓW (x) is a continuous, non-decreasing function on [0, 1]. If ΓW (v) > 0

for every v ∈ T , then x 7→ ΓW (x) is strictly increasing and hence a continuous bijection of [0, 1] onto

[0,ΓW (1)]. In the case Γ = θ, Benjamini and Schramm used this map to establish a relation between

the Hausdorff dimension of a set and its random image under θW . Specifically they show the following:

Theorem 1.6.1 ([1]). Let W be a cascading distribution with E [W logW ] < log 2 (so that θ is W -

regular), and assume that E [W−s] <∞ for all s ∈ [0, 1). Let K ⊂ [0, 1] be some non-empty, determin-

istic set. Then there is the following KPZ formula:

dimH K = φW (dimH θW (K)) ,

where θW (K) is the (random) image of K via the distribution function θW , and φW is the deterministic

bijection from [0, 1] onto [0, 1] given by

φW (h) = h− log2 E
[
Wh

]
.

Applying our process to this setup gives some interesting interpretations. Let θt and φt denote

the corresponding cascade process and bijection when we replace W by dynamic weights Wt. As time

evolves, the image set θt(K) moves about the line and its Hausdorff changes with it, yet the dimension

evolves deterministically even though the set evolves randomly. Remark 1.3.1 and the formula above tell

us that φt(h) is a decreasing function of t for each fixed h, and hence Hausdorff dimensions get smaller as

time evolves. Using our process it is possible to understand the infinitesimal evolution of the dimension.

Indeed write d(t) = dimH θt(K), and then the KPZ formula becomes

d(0) = φt(d(t)).

Differentiating both sides with respect to t leads to an ODE for d(t):

ḋ(t) = − φ̇t(d(t))

φ′t(d(t))
.

The particulars of this ODE depends on the type of weight process being used. For example in the case

of Gaussian weights as in Section 1.4 it becomes

ḋ = − d(1− d)

2 log 2− t(2d− 1)
=: ψt(d).

This ODE has many interesting aspects. First note that the 2 log 2 appears because it is the lifetime of

the θt process, that is the time at which it collapses to the zero measure. Further, by the presence of the

t term in the denominator the ODE is non-autonomous, except at d = 1/2 where the non-autonomous

term strangely disappears. It can also be shown that

lim
t↑2 log 2

= 1−
√

1− d(0),
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so that even as θt approaches the zero measure the Hausdorff dimension of the random set stays bounded

away from zero.

Although the work of Benjamini and Schramm can be used to derive the infinitesimal evolution of

the Hausdorff dimension, in principle it should be possible to derive it separately and use it to give an

alternate proof of their KPZ formula. All that needs to be found is a proof of the relation

dimH θt+δ(K) = dimH θt(K) + ψt(dimH θt(K))δ + o(δ)

that does not use the Benjamini and Schramm statement (although many of the techniques of their proof

would probably be incorporated), and then the Markov property of the θt process turns this infinitesimal

relation at a fixed time into the ODE that holds at all times. We have attempted to derive this relation

but thus far been unable to, although we hope a proof will be at hand soon. In fact we believe that there

is a slightly more general fact lurking in the background: namely that if Γ is an initial measure and W

a cascading distribution that is a small perturbation away from the degenerate distribution at one, then

dimH ΓW (K) = dimH Γ(K) + ψΓ,W (dimH Γ(K)).

Here ψΓ,W would be a deterministic function determined by the properties of Γ and the size and type

of the perturbation of W away from one. The infinitesimal relation is given by the “derivative” of ψ as

the cascading distribution concentrates at one. It is not clear to us exactly how the properties of Γ enter

into the picture, although we expect that they must in some form. It is also not clear if the relation

above will be independent of the set K for all initial measures Γ, although we expect it will be for initial

measures with some type of self-similarity.



Chapter 2

Eigenvectors of the One-Dimensional

Anderson Tight Binding Model

2.1 Introduction

We consider the critical model of the one-dimensional discrete random Schrödinger operators given by

the matrix

Hn =



v1,n 1

1 v2,n 1

1
. . .

. . .

. . .
. . . 1

1 vn−1,n 1

1 vn,n


(2.1.1)

where

vk,n = σωk/
√
n. (2.1.2)

Here ωk are independent random variables with mean 0, variance 1 and bounded third absolute moment.

With the boundary condition ψ(0) = 0 = ψ(n+ 1), we can write the eigenvalue equation Hnψ = µψ

as

ψ(`− 1) + v`,nψ(`) + ψ(`+ 1) = µψ(`), ` = 1, . . . , n.

Notice that this gives the recursion ψ(`+ 1) = (µ − v`,n)ψ(`) − ψ(`− 1). The general idea is to write

this as the multiplicative recursion,(
ψ(`+ 1)
ψ(`)

)
= T (µ− v`,n)

(
ψ(`)

ψ(`− 1)

)
= Mµ

n (`)

(
ψ1

ψ0

)
, (2.1.3)

where

T (x) :=

(
x −1

1 0

)
and Mn(µ, `) := T (µ− v`,n)T (µ− v`−1,n) · · ·T (µ− v1,n).

This product of matrices completely characterizes the eigenvalues and eigenvectors of Hn. µ is an

31
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eigenvalue of Hn if and only if

Mn(µ, n)

(
1
0

)
= c

(
0
1

)
, (2.1.4)

for some c ∈ R or, equivalently (Mn(µ, n))11 = 0. Moreover, notice that the corresponding eigenvector

φµ with choice of normalization φµ(1) = 1 is given by

φµ(`) = (Mn(µ, `− 1))11 , ` = 1, . . . , n. (2.1.5)

It therefore suffices to understand the scaling limit of this multiplicative recursion. The limiting diffusion

for this process was developed in [13] and used to give a characterization of the limit of the local eigenvalue

point process. Building on this framework, we give a characterization of the limiting eigenvectors.

If there is no noise (i.e. σ = 0) then the eigenvalues µk and eigenvectors ψk of Hn are given by

µk = 2 cos(πk/(n+ 1)),

ψk(`) = sin(πk`/(n+ 1)).

The asymptotic density near E ∈ (−2, 2) is given by the arcsin law, ρ
2π with

ρ = ρ(E) =
1√

1− E2/4
1|E|<2. (2.1.6)

The fact that the eigenvectors of Hn are delocalized was shown in [13]. The eigenvectors are highly

oscillatory and so we focus on their induced L2 measure which gives an approximation of the enve-

lope of the eigenvector. For µ an eigenvalue of Hn and ψµ the corresponding normalized eigenvector

(
∑n
`=1 |ψµ(`)|2 = 1), we consider the measure on [0, 1] whose density is |ψµ (bntc)|2 dt.

500 1000 1500 2000

-1.0

-0.5

0.5

1.0

Figure 2.1: n = 2000, v` ∼ N(0, 1). The graph in blue is that of a particular eigenvector, while the
purple graph is the approximate density of the corresponding measure

We let M([0, 1]) be the space of finite measures on [0, 1] with the weak topology. By this we mean
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that µn → µ if
∫
fdµn →

∫
fdµ for every f ∈ Cb([0, 1],R).

Our main result is a statement about the joint convergence in law of the pairs(
µ, |ψµ (bntc)|2 dt

)
∈ R×M[0, 1]

when we pick µ uniformly at random from the eigenvalues of Hn.

Theorem 2.1.1. Let B be a standard two-sided Brownian motion started from 0 and take

S(t) = exp

(
Bt√

2
− |t|

4

)
.

Pick µ uniformly from the eigenvalues of Hn and let ψµ be the corresponding normalized eigenvector.

Then letting τ(E) = (σρ(E))2,

(
µ, n |ψµ (bntc)|2 dt

)
⇒

(
E,

S
(
τ(t− u)

)
dt∫ 1

0
ds S (τ(s− u))

)
.

Here E is distributed according to the arcsine law, u is uniform from [0, 1], and E, u and B are all

independent.

The organization of this chapter is the following. In section 2.2 we explain the transfer matrix

framework and give the main theorem of [13] along with our slight modification. In Section 2.3, we give

a local version of Theorem 2.1.1. And finally in Section 2.4 we show how this local result gives the proof

of the main theorem.

2.2 Transfer Matrix

[13] showed that the transfer matrix framework has a limiting evolution; it is this limiting object that

enabled them to characterize the limiting eigenvalue process. Our main technical result is a slight

strengthening of the convergence in that theorem. Our analysis will make use of this convergence and

the correspondence between eigenvectors and transfer matrices. Recall the transfer matrix description

of the spectral problem for Hn. We defined,

Mn(µ, `) := T (µ− v`,n)T (µ− v`−1,n) · · ·T (µ− v1,n),

T (x) :=

(
x −1

1 0

)
.

Then µ is an eigenvalue of Hn if and only if

Mn(µ, n)

(
1
0

)
= c

(
0
1

)
, (2.2.1)

for some c ∈ R or, equivalently (Mn(µ, n))11 = 0. The corresponding normalized eigenvector ψµ is given
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by

ψµ(`) =
mµ
n(`− 1)√∑n
k=1 |m

µ
n(k)|2

, ` = 1, . . . , n, (2.2.2)

where we have written mµ
n(`) = (Mn(µ, `))11.

The main result of [13] is a limiting diffusion for Mn locally around any fixed 0 < |E| < 2. In view of

(2.1.6) we parametrize µ = E+ λ
ρ(E)n . We will use the notation Mn,E(λ, `) to emphasize dependence on

λ and E, and use the similar notation for other quantities. Sometimes we will drop E from our notation

and when we do so we are implicity assuming that there is a fixed 0 < |E| < 2 in the background.

Setting

ε`,n =
λ

ρn
− σω`√

n
, (2.2.3)

we have

Mn,E(λ, `) = T (E + ε`,n)T (E + ε`−1,n) · · ·T (E + ε1,n) for 0 ≤ ` ≤ n. (2.2.4)

As T (E+ ε`,n) is a perturbation of T (E), we follow the evolution in the coordinates that diagonalize

T (E). For |E| < 2, we can write T (E) = ZDZ−1 with

D =

(
z 0

0 z

)
, Z =

iρ(E)

2

(
z z

1 1

)
, z = E/2 + i

√
1− (E/2)2. (2.2.5)

From this we can see that for |E| < 2, Mn,E(λ, `) is a perturbation of the rotation matrix D` and so

we cannot hope for a limiting process. However, if we regularize the evolution by undoing the rotation

and consider instead

Qn,E(λ, `) = T−`(E)Mn,E(λ, `), (2.2.6)

then we have the the following scaling limit from [13].

Theorem 2.2.1. Assume 0 < |E| < 2. Let B(t),B2(t),B3(t) be independent standard Brownian motions

in R, W(t) = 1√
2
(B2(t) + iB3(t)). Then the stochastic differential equation

dQ(λ, t) =
1

2
Z

((
iλ 0

0 −iλ

)
dt+

(
idB dW
dW −idB

))
Z−1Q(λ, t), Q(λ, 0) = I (2.2.7)

has a unique strong solution Q(λ, t) : λ ∈ C , t ≥ 0, which is analytic in λ.

Moreover, let τ = (σρ(E))
2
, then(

Qn,E

(
λ, bnt/τc

)
, 0 ≤ t ≤ τ

)
⇒ (Q(λ/τ, t), 0 ≤ t ≤ τ),

in the sense of finite dimensional distributions for λ and uniformly in t. Moreover, the random analytic

functions Qn,E(λ, t) converge in law to Q(λ/τ, t) with respect to the local uniform topology on C× [0, τ ].

Remark 2.2.1. The main part of this theorem is proven in [13]. The work we have done here is to

strengthen the tightness argument which allows us to get convergence in law with respect to the local
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uniform topology on C× [0, τ ]. The extra tightness argument along with how this implies the result is in

Section 2.5.

2.3 Local Limits of Eigenvalue-Eigenvector Pairs

In this section we prove a local version of Theorem 2.1.1. We will zoom in on the eigenvalue point

process around a fixed 0 < |E| < 2. Recall that the eigenvalue spacings near E are like 1/(nρ(E)) and so

we consider the operator nρ(E)(Hn −E). Our local result is about the joint convergence of eigenvalue,

eigenvectors pairs of this scaled operator. As with our global limit we consider the induced L2 measure

on [0, τ ] coming from the eigenvector since it is otherwise too irregular to have a scaling limit. We think

of these pairs as a point process on X = R×M[0, τ ],

Pn,E =
{(
nρ(E)(µ− E) + θ,

n

τ
|ψµ(bnt/τc)|2 dt

)
: µ an eigenvalue of Hn

}
.

With the usual product topology X is a complete, separable metric space. Let M(X) be the set of

locally finite measures on X with the local weak topology. In other words, we say µn ∈M(X) converges

to µ ∈ M(X) if for every continuous function f : X → R with compact support,
∫
fdµn →

∫
ψdµ. A

random measure on M(X) is a measurable map ω → µ ∈ M(X), with the Borel σ-algebra on M(X).

By the point process Pn,E we mean the random measure inM(X) given by the sum of the delta masses

corresponding to points in the set. And by convergence in law of a sequence of point processes on X we

mean the usual notion of weak convergence of the corresponding random measures on M(X).

Theorem 2.3.1. Fix 0 < |E| < 2 and take τ = τ(E) = (σρ(E))2. Let θ be uniform on [0, 2π]. Then,

the point process on R×M[0, τ ]{(
nρ(E)(µ− E) + θ,

n

τ
|ψµ(bnt/τc)|2 dt

)
: µ an eigenvalue of Hn

}
converges in law to a point process PE.

Moreover, for t ∈ R, let

S(t) = exp
(
Zt/
√

2− |t| /4
)
,

where Z is a two sided Brownian motion started from 0.

And define a measure µE on X such that for every F ∈ Cb (R×M[0, τ ]),

∫
F (λ, ν) dµE(λ, ν) =

1

2π

∫
dλEF

(
λ,

S(t− u)dt∫ τ
0
ds S(s− u)

)
,

with u independent, uniform on [0, τ ]. Then the intensity measure of PE is µE.

Remark 2.3.2. We note that [13] proved the convergence of the local eigenvalue point process and

characterized the limit. Our result is an extension to the eigenvalue-eigenvector pairs.

The proof of weak convergence proceeds in the usual steps. We first show subsequential convergence

and then that the limit does not depend on the subsequence. We calculate the intensity measure in a

separate lemma.

In order to characterize the limiting point process, we introduce two limiting random processes. Note
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that for 0 < |E| < 2, for any a, b ∈ R2 we have

Z−1

(
a

b

)
=

(
i(a− bz)
i(a− bz)

)
.

So Z−1 maps real vectors to vectors with conjugate entries. Since for λ ∈ R the transfer matrix Qn,E(λ, `)

is real valued the process Q(λ, t) will also be real valued. Therefore, we can write for λ ∈ R,(
iqλ(t)

iqλ(t)

)
:= Z−1Q(λ, t)

(
1

0

)
(2.3.1)

for some complex numbers qλ(t) where qλ(0) = 1 (the extra i in the above definition makes this and

some upcoming formulas nicer). We will show that qλ determines both the limiting eigenvalue point

process and the limiting eigenvector shape. It will be useful to write q = reiθ in its polar coordinates

and so we make the following definition/lemma.

Lemma 2.3.3. For λ ∈ R, we let θλ(t) := 2 arg qλ(t) uniquely defined as a continuous function and

rλ(t) := ln
∣∣qλ(t)

∣∣2. Then r and θ uniquely satisfy the following stochastic differential equations,

dθλ(t) = λdt+ dB + Im
[
e−iθ

λ(t)dW
]
, θλ(0) = 0 (2.3.2)

drλ(t) =
dt

4
+ Re

[
e−iθ

λ(t)dW
]
, rλ(0) = 0. (2.3.3)

coupled together for all values of λ ∈ R where B andW are standard real and complex Brownian motions.

Moreover θλ(t) is almost surely real analytic in λ and φλ(t) := ∂θλ(t)
∂λ satisfies the SDE

dφλ(t) = dt− Re(e−iφ
λ(t)dW)φλ(t).

Our first step in proving Theorem 2.3.1 is to show convergence in law along subsequences.

Lemma 2.3.4. Fix 0 < |E| < 2. For λ ∈ R, let mλ
n, qλ be measures on [0, τ ] with densities

dmλ
n(t) =

∣∣∣((2/ρ(E))Mn,E (λ, bnt/τc)
)

11

∣∣∣2 dt,
dqλ(t) =

∣∣qλ(t)
∣∣2 dt.

Suppose that nj is a subsequence along which z(E)nj → z̃. Then the point process on X,{(
λ,mλ

n

)
: λ ∈ Λnj ,E

}
,

converges in law to {(
λ, 2qλ/τ

)
: λ ∈ Sch2φ̃

τ

}
.

Here, for any φ ∈ R, we let

Schφτ = {λ ∈ R : θ(λ/τ, τ) ∈ 2πZ + φ} and φ̃ = arg(z − z̃).

The next lemma shows that the distribution of the limit depends on the subsequence in a simple

way.
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Lemma 2.3.5. Fix τ > 0 and u uniform in [0, 2π]. Then for any φ ∈ R,

{(
λ+ u, qλ/τ

)
: λ ∈ Schφτ

}
=d
{(
λ, qλ/τ

)
: λ ∈ Schuτ

}
.

And finally we need the following lemma to help calculate the intensity measure of the limiting point

process.

Lemma 2.3.6. For every G ∈ Cb (R× C[0, τ ]),

E
∑

λ∈Sch∗τ

G(λ, rλ/τ ) =
1

2π

∫
dλE

[
G

(
λ,
B√
2

+
fu

2

)]
,

with B a standard Brownian motion started at zero, u independent, uniform on [0, τ ], and fu(t) =
1
2 (u− |u− t|).

The above three lemmas give the proof of Theorem 2.3.1.

Proof of Theorem 2.3.1. Lemma 2.3.4 gives that along a subsequence nj such that znj converges to z̃,

we have that {(
λ+ u,mλ

n

)
: λ ∈ Λnj ,E

}
⇒
{(
λ+ u, 2qλ/τ

)
: λ ∈ Schφ̃τ

}}
=d
{(
λ, 2qλ/τ

)
: λ ∈ Sch∗τ

}
with the equality following by Lemma 2.3.5. Since from any subsequence we can extract a further

subsequence nj such that znj converges, this gives that{(
λ+ u,mλ

n

)
: λ ∈ Λnj ,E

}
⇒
{(
λ, 2qλ/τ

)
: λ ∈ Sch∗τ

}
.

Now recall that for λ ∈ Λn,E , λ = nρ(E)(µ − E) for µ an eigenvalue of Hn and the corresponding

normalized eigenvector is

ψµ(`) =
(Mn,E(λ, `))11√∑n
k=1

∣∣(Mn,E(λ, k))11

∣∣2 , ` = 1, . . . , n.

And so since dmλ
n(t) =

∣∣∣((ρ/2)Mn,E(λ, (bnt/τc)
)

11

∣∣∣2 dt,
n

τ
|ψµ(bnt/τc)|2 dt =

dmλ
n(t)

mλ
n[0, τ ]

.

Since the function from M[0, 1] to itself given by µ 7→ µ/µ[0, 1] is continuous except at zero and the

probability that mλ
n ≡ 0 is zero, this gives the convergence in law,

{(
nρ(E)(µ− E) + θ,

n

τ
|ψµ(bnt/τc)|2 dt

)
: µ an eigenvalue of Hn

}
⇒
{(

λ,
qλ/τ

qλ/τ ([0, τ ])

)
: λ ∈ Schφ̃τ

}
Now note that,

exp(Bt + 1
2 (u− |u− t|))∫ τ

0
ds exp

(
Bt + 1

2 (u− |u− t|)
) =d exp (Zt−u − |u− t|/2)∫

exp (Zs−u − |u− s|/2)
,
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as processes on [0, τ ], where B is a standard Brownian motion while Z is a two sided Brownian motion

started from zero. And so from Lemma 2.3.6, we have the intensity measure of the limiting point

process.

We now present the proofs of the three lemmas of this section.

Proof of Lemma 2.3.4. We are trying to show convergence in law of random point measures on X =

R × M[0, τ ]. In other words, we want to show that µnj =
∑
λ∈Λnj,E

δ(λ)δ(mλ
nj ) converges in law

to µ =
∑
λ∈Schφ̃τ

δ(λ)δ(qλ/τ ) with respect to the local weak topology. By the general theory of point

processes (see Proposition 11.1.VIII, [5]) it suffices to show that for any h ∈ Cc(X,R), the real valued

random variables
∫
hdµnj converge in law to

∫
hdµ.

First, for all w ∈ C, we let

Fn(w, t) :=

(
F 1
n(w, t)

F 2
n(w, t)

)
:= Z−1Qn,E(w, bnt/τc)

(
1

0

)
,

F (w, t) :=

(
F 1(w, t)

F 2(w, t)

)
:= Z−1Q(w, t)

(
1

0

)
.

By Lemma 2.2.1 we have that Qn(w, bnt/τc) converges in law with respect to the local uniform topology

on C × [0, τ ] (see Section 2.5) to Q(w/τ, t). Since Z is a deterministic transform, we also have that

Fn(w, t) converges in law to F (w/τ, t). We first show that µn is determined by Fn while µ is determined

by F .

Recall that we defined

Qn,E(w, `) = T−`(E)Mn,E(w, `),

and so

2

ρ(E)
(Mn,E(w, bnt/τc))11 =

(
1 0

)( 2

ρ(E)
Z

)
Dbnt/τcZ−1Qn,E(w, bnt/τc)

(
1

0

)
(2.3.4)

= zbnt/τc−1F 1
n(w, t) + zbnt/τc−1F 2

n(w, t), . (2.3.5)

In other words mλ
n is a function of Fn. Moreover, for λ ∈ R, we have by equation (2.3.1) that 2

∣∣qλ(t)
∣∣2 =∣∣F 1(λ, t)

∣∣2 +
∣∣F 2(λ, t)

∣∣2 and so qλ is a function of F .

Moreover, Λn,E = {w ∈ R : mn(w, τ) = 0}, which again is determined by Fn. And in fact,

(2/ρ)mnj (w, τ) converges in law to

m̃(w) := lim
nj→∞

znj−1F 1
nj (w, t) + znj−1F 2

n(w, t)

:= z̃zF 1(w/τ, τ) + z̃zF 2(w/τ, τ).

And now notice that for λ ∈ R, by equation (2.3.1)

m̃(λ, τ) = 0 ⇐⇒ z̃ziq(λ/τ, τ) + z̃ziq(λ/τ, τ) = 0 ⇐⇒ arg q(λ/τ, τ) + arg(z̃ − z) +
π

2
= 0.

In other words Schφτ is the zero set of m̃, which is determined by F .
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We have shown that
∫
hdµn is a measurable function of Fn while

∫
hdµ is a measurable function of

F . Since Fn converges in law to F , the continuous mapping theorem (eg. [11], Theorem 3.27) allows

us to remove the randomness from the problem. We may assume that Fn converges to F in the local

uniform topology and simply show that this implies that
∫
hdµnj converges to

∫
hdµ. We may also

assume that h = h1 · h2, with h1 ∈ Cc(C) and h2 ∈ C(M[0, τ ]),

First notice that if λn → λ ∈ R, then as measures on [0, τ ], mλn
n converges weakly to qλ/τ (and so

h2(mλn
n ) converges to h2(qλ/τ )). Take u ∈ C[0, τ ], then∫

u dmλn
n =

∫ τ

0

u(t)
∣∣∣zbnt/τcF 1

n(λn, t) + zbnt/τcF 2
n(λn, t)

∣∣∣2 dt.
Expanding the absolute value, noting that Fn(λn, t) converge uniformly on [0, τ ] to F (λ/τ, t), and ap-

plying Lemma (2.7.1) gives that

lim
n

∫
u dmλn

n =

∫ τ

0

u(t)
(∣∣F 1(λ/τ, t)

∣∣2 +
∣∣F 2(λ/τ, t)

∣∣2) dt
=

∫ τ

0

u(t) dqλ/τ (t).

Moreover since Fn converges to F and znj converges to z̃, the analytic functions on C, mnj (w, τ)

converge in the local uniform topology to m̃(w/τ). By Hurwitz’s theorem this gives that the zeros of

these functions converge pointwise. And the real valued zeros converge to real valued zeros. And so,

lim
nj

∑
λ∈R:mnj (λ,τ)=0

h1(λ)h2(mλ
nj ) =

∑
λ∈R:m̃(λ/τ)=0

h1(λ)h2(qλ/τ ),

which completes the proof.

Proof of Lemma 2.3.5. Recall that rλ = ln
∣∣qλ∣∣2. It therefore suffices to show that for u uniform on

[0, 2π], {(
λ+ u, rλ/τ

)
: λ ∈ Schφτ

}
=d
{(
λ, rλ/τ

)
: λ ∈ Schuτ

}
We first show that for u ∈ R fixed,{(

λ+ u, rλ/τ
)

: λ ∈ Schφτ

}
=d
{(
λ, rλ/τ

)
: λ ∈ Schφ+u

τ

}
Recall the SDEs from Lemma 2.3.3,

dθλ = λdt+ dB + Im
[
e−iθ

λ(t)dW
]
, θλ(0) = 0 (2.3.6)

drλ =
dt

4
+ Re

[
e−iθ

λ(t)dW
]
, rλ(0) = 0. (2.3.7)

coupled together for all values of λ ∈ R where B and W are standard real and complex Brownian

motions. We let θ̃λ(t) := θλ−u/τ (t) + (u/τ)t and r̃λ(t) := rλ−u/τ (t) and notice that θ̃λ and r̃λ jointly

solve equations (2.3.6) and (2.3.7).
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And so, since θ(λ−u)/τ (τ) = θ̃ λ/τ (τ)− u,

Schφτ + u = {λ : θ(λ−u)/τ (τ) ∈ 2πZ + φ}

= {λ : θ̃ λ/τ (τ)− u ∈ 2πZ + φ}.

Therefore {(
λ+ u, r λ/τ

)
: λ ∈ Schφτ

}
=
{(
λ, r(λ−u)/τ

)
: λ ∈ Schφτ + u

}
=
{(
λ, r̃ λ/τ

)
: θ̃ λ/τ (τ) ∈ 2πZ + φ+ u

}
=d
{(
λ, rλ/τ

)
: λ ∈ Schφ+u

τ

}
by the uniqueness of solutions. Now if u is uniform on [0, 2π], then u + φ mod 2π is still uniform on

[0, 2π] and so Schφ+u
τ =d Schuτ which finishes the proof.

Proof of Lemma 2.3.6. Recall that Sch∗τ = {λ : θλ/τ (τ) ∈ 2πZ + v}, where v is uniform on [0, 2π].

Integrate out v to get

E
∑

λ∈Sch∗τ

G(λ, rλ/τ ) =
1

2π
E

∫ 2π

0

du
∑

λ:θλ/τ (τ)∈2πZ+u

G(λ, rλ/τ )

=
1

2π
E

∫ ∞
−∞

du
∑

λ:θλ/τ (τ)=u

G(λ, rλ/τ ).

Now using Lemma 2.3.3 we have that θλ/τ (τ) is almost surely a real analytic function in λ while rλ/τ is

continuous in λ and so we can apply the co-area formula and then Fubini to get

1

2π
E

∫ ∞
−∞

du
∑

λ:θλ/τ (τ)=u

G(λ, rλ/τ ) =
1

2π

∫ ∞
−∞

dλE

[
G(λ, rλ/τ )

∣∣∣∣∂θλ/τ (τ)

∂λ

∣∣∣∣] (2.3.8)

From Lemma 2.3.3, we have that the evolution of rλ/τ is given by

drλ/τ (t) =
dt

4
+ Re(e−iθ

λ/τ (t)dW).

And moreover, φλ/τ (t) = ∂θλ/τ (t)
∂λ is well defined, with SDE

dφλ/τ =
dt

τ
− Re(e−iθ

λ/τ

dW)φλ/τ

Now fix λ and notice that e−iθ/τ
λ

dW =d dW and so rλ/τ and φλ/τ do not depend on λ. We can therefore

drop the superscript and jointly solve for r and φ to get

rt =
t

4
+
Bt√

2

φt =
1

τ

∫ t

0

due(ru−rt).
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And so by Fubini,

E

[
G(λ, rλ/τ )

∣∣∣∣∂θλ/τ (τ)

∂λ

∣∣∣∣] =
1

τ

∫ τ

0

duE
[
e(ru−rτ )G(λ, r)

]
,

Fix u ∈ [0, τ ] and for simplicity, consider the process r̃t = Bt + t/2. This is just the time change

t → 2t. We will calculate the distribution of the path r̃ on [0, τ ] weighted by exp (r̃u − r̃τ ). In other

words if we take R to be the law of r̃ on C[0, τ ], we need to characterize the measure on C[0, τ ] given

by,

exp(ωu − ωτ )dR(ω).

By standard Girsanov theory, if we take P to be the law of Brownian motion on C[0, τ ], then dR(ω) =

exp
(
ωτ
2 −

τ
8

)
dP(ω) and so

exp(ωu − ωτ )dR(ω) = exp
(
ωu −

ωτ
2
− τ

8

)
dP(ω). (2.3.9)

Now if we let xu := xu(ω) be the Brownian path reflected at u, we have that the corresponding expo-

nential martingale of xu/2 at τ is

exp

(
xuτ
2
− [xu]τ

8

)
= exp

(
ωu −

ωτ
2
− τ

8

)
where [xu]t is the quadratic variation of xu at t. Therefore, by another application of Girsanov, if we

let fut = [xu/2, ω]t = 1
2 (u− |u− t|) , then under the measure exp(ωu − ωτ )dR(ω) on C[0, τ ] a path ω is

distributed like B+ fu where B is a standard Brownian motion. Undoing the time change and applying

Brownian scaling gives that,

E
[
e(ru−rτ )G(λ, r)

]
= E

[
G

(
λ,
B√
2

+
fu

2

)]
,

which completes the proof.

Proof of Lemma 2.3.3. We let Xλ(t) = Z−1Q(λ, t). From equation (2.2.7) we have the following stochas-

tic differential equation,

dXλ =
1

2

((
iλ 0

0 −iλ

)
dt+

(
idB dW
dW −idB

))
Xλ, Xλ(0) = Z−1.

This gives that

dXλ
11 =

1

2

(
iλXλ

11 dt+ iXλ
11dB +Xλ

21dW
)
.

If λ ∈ R, then Xλ
11 = Xλ

21 and moreover iqλ = Xλ
11. We fix λ ∈ R and drop it from our notation to get

dq =
iλ

2
q dt+

1

2
(iqdB − qdW) q(0) = 1
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Ito’s formula then gives that

d ln q =
dq

q
− 1

2

(dq)2

q2

=
iλ

2
dt+

i

2
dB +

1

2

q

q
dW +

dt

8

Since r = 2Re ln q and θ = 2Im ln q, this yields the following SDEs,

dr = Re

(
q

q
dW

)
+
dt

4
,

dθ = λdt+ dB + Im

(
q

q
dW

)
.

Noting that q
q = exp(−iθ) finishes the proof.

2.4 Proof of Main Theorem

We are now in a position to prove the main theorem of this work. We will average the local result of

Theorem 2.3.1 to get the more macroscopic version of the theorem. In order to do so we need to be able

to control the number of eigenvalues in a microscopic interval (of size 1/(ρn)) around E. We need the

following lemma whose proof is given in Section 2.6.

Lemma 2.4.1. Fix R > 0 and let ∆n(E) =
(
E − R

nρ(E) , E + R
nρ(E)

)
. Furthermore, let Nn(E) =

|Λn ∩∆n(E)| be the number of eigenvalues of Hn in ∆n(E). Then for any ε > 0,

sup
n

sup
E∈(−2+ε,2−ε)

E [Nn(E)]
3/2

<∞.

We now give the proof of Theorem 2.1.1.

Proof of Theorem 2.1.1. Take θ uniform on [0, 2π] and let ψµn ∈ M[0, 1] with density |ψµ (bntc)|2 dt.
Using Theorem 2.3.1 and the time change t→ τt, we have that for 0 < |E| < 2, the point process

PE,n =
{(
nρ(E)(µ− E) + θ, nψµn

)
: µ ∈ Λn

}
.

converges in law to a limiting point process Pτ .

In particular, if we fix g1 = (1− |x|)1[|x|≤1], g2 ∈ Cb(R×M[0, 1]) and let

Gn(E) :=
∑
µ∈Λn

g1

(
nρ(E)(µ− E)

)
g2 (µ,ψµn) .

Then for fixed |E| < 2, Gn(E) converges in distribution to G(E) and

EG(E) =
1

2π
Eg2

(
E,

S(τ(t− u))dt∫ 1

0
ds S(τ(s− u))

)
. (2.4.1)

We now show that
∫

EGn(E)dρ(E) converges to
∫

EG(E)dρ(E) from which the result will follow.
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Fix ε > 0. Since supp g1 ⊂ [−1, 1], we let

Nn(E) = {µ ∈ Λn : |µ− E| ≤ 1/(nρ(E)} ,

which gives that Gn(E) ≤ ‖g1‖∞ ‖g2‖∞Nn(E). And so from Theorem 2.4.1,

sup
n

sup
0<|E|<2−ε

E [Gn(E)]
3/2

<∞.

Therefore Gn(E)1|E|<2−ε is uniformly integrable with respect to P× dρ. And so since Gn(E) converges

in law to G(E), we have that

lim
n→∞

∫
dρ(E)E

[
Gn(E)1[|E|<2−ε]

]
=

∫
dρ(E)E

[
G(E)1[|E|<2−ε]

]
. (2.4.2)

Now by Fubini,∫
dρ(E)E

[
Gn(E)1[|E|<2−ε]

]
= E

∑
µ∈Λn

g2 (µ,ψµn)

∫ 2−ε

−2+ε

dρ(E)g1

(
nρ(E)(µ− E)

)
.

Fix δ > ε and let An(δ) = {µ ∈ Λn : |µ| < 2− δ}, Bn(δ) = {µ ∈ Λn : |µ| ≥ 2− δ}. We write

∫
dρ(E)E

[
Gn(E)1[|E|<2−ε]

]
= E

 ∑
µ∈An(δ)

g(µ)

+ E

 ∑
µ∈Bn(δ)

g(µ)

 ,
with

g(µ) = g2 (µ,ψµn)

∫ 2−ε

−2+ε

dρ(E)g1

(
nρ(E)(µ− E)

)
,

and deal with each piece separately.

First notice that for k ∈ N, we can bound

|Bn(δ)| ≤
∑

µ∈Bn(δ)

(
µ

2− δ

)2k

≤ (2− δ)−2k
∑
µ∈Λn

µ2k,

We know that for fixed k,

lim
n→∞

E

 1

n

∑
µ∈Λn

µ2k

 =
1

2π

∫
x2kρ(x)dx

≤ C 22k

√
k
.
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Taking k = b1/δc, we have that
(
1− (δ/2)

)−2k
is bounded independent of δ. And so,

lim
n→∞

1

n
E |Bn(δ)| ≤ C

(
1− (δ/2)

)−2k

√
k

(2.4.3)

≤ C
√
δ (2.4.4)

Now use the second part of Lemma 2.7.2 to get that for µ ∈ Bn(δ),∫
dρ(E)g1

(
nρ(E)(µ− E)

)
≤ D

n
.

And along with equation (2.4.4) this gives

E
∑

µ∈Bn(δ)

g(µ) ≤ ‖g2‖∞
D

n
|Bn(δ)|

= O(
√
δ).

Now for n large enough if µ ∈ An(δ),∫ 2−ε

−2+ε

g1

(
nρ(x)(x− µ)

)
dρ(x) =

∫ 2

−2

g1

(
nρ(x)(x− µ)

)
dρ(x)

=
1

n

∫
g1(x) dx+ o (1/n)

=
1

n
+ o (1/n)

The first equality follows from the fact that for x ∈ [−2, 2], ρ(x) ≥ 1. And so since g1 ∈ Cc(R), we have

that |x− µ| ≤ D/n for some constant D. Since µ < 2− δ, we have that |x| < 2− ε for n large enough.

The second equality follows from Lemma 2.7.2. And so

E
∑

µ∈An(δ)

g(µ) =
1

n

∑
µ∈An(δ)

Eg2

(
µ,ψµ

)
+ o(1)

=
1

n

∑
µ∈Λn

Eg2

(
µ,ψµ

)
+O(

√
δ) + o(1),

with the last equality coming from equation (2.4.4). To sum up∫
dρ(E)E

[
Gn(E)1[|E|<2−ε]

]
=

1

n

∑
µ∈Λn

Eg2(µ,ψµ) + o(1) +O(
√
δ). (2.4.5)

On the other hand, ∫
dρ(E)E

[
G(E)1[|E|<2−ε]

]
=

∫
dρ(E)E [G(E)] +O(ε).

And so by equation (2.4.1) along with equation (2.4.5) and the convergence from equation (2.4.2) we



Chapter 2. Eigenvectors of the One-Dimensional Anderson Tight Binding Model 45

have that

lim
n→∞

1

n

∑
µ∈Λn

E g2

(
µ,ψµ

)
=

1

2π

∫
dρ(E)Eg2

(
E,

S(τ(t− u))dt∫ 1

0
ds S(τ(s− u))

)
+O(ε) +O(δ).

Since δ > ε was arbitrary, this completes the proof.

2.5 Tightness

In this section we discuss the underlying tightness bounds we need to prove the weak convergence in

Lemma 2.2.1. We will use the following notions of convergence. Let Ad denote the space of continuous

functions from C × [0, 1] to C d that are also analytic in the first variable. In other words, if f ∈ Ad,
then for every t ∈ [0, 1], f(·, t) is an analytic function from C to C d. We equip Ad with the metric

d(f, g) :=

∞∑
r=1

2−r
‖f − g‖r

1 + ‖f − g‖r
, ‖h‖r := max

(x,z)∈Dr
‖h(z, x)‖ ,

where Dr = Br × [0, 1] and Br = {w ∈ C : |w| ≤ r}. Under this metric Ad ⊂ C
(
[0, 1]× C,Cd

)
is a

complete, separable metric space.

A random function in Ad is a measurable mapping ω → f ∈ Ad from a probability space (Ω,F , P ) to

(Ad,B), where B is the Borel σ-field generated by the metric d. The law of f is the induced probability

measure ρf on (Ad,Bd). A sequence f` of random analytic functions is said to converge in law to a

random f ∈ Ad if ρf` → ρf in the usual sense of weak convergence.

Proposition 2.5.1. Suppose f` is a sequence of random functions in Ad such that

(1) For every w ∈ C, the processes f`(w, ·) ∈ C
(
[0, 1],Cd

)
are tight,

(2) For every r > 0,

lim
M→∞

sup
`

P (‖f`‖r > M) = 0, (2.5.1)

(3) For each m ≥ 1 and (z, t) = ((z1, t1), (z2, t2), · · · , (zm, tm)) ∈ (C× [0, 1])
m

there is a probability

distribution ν
(z,t)
m on (Cd)m and the random vector (f`(z1, t1), f`(z2, t2), · · · , f`(zm, tm)) ∈

(
C d
)m

con-

verges in law to νz,tm .

Then there is a random function f in Ad such that f` converges in law to f . Moreover for each

(z, t) = ((z1, t1), (z2, t2), · · · , (zm, tm)) ∈ (C× [0, 1])
m

, (f(z1, t1), f(z2, t2), · · · , f(zm, tm)) ∈ Cm has

distribution ν
(z,t)
m .

Proof. We first show that Assumptions (1) and (2) imply that the sequence f` is tight. We may assume

that each f` ∈ A1 since tightness in every coordinate function implies that the sequence is tight.
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Fix r > 0, |w|, |u| ≤ r, and take f ∈ A1. Then, by Cauchy’s integral formula,

f(w, t)− f(u, t) = Cr

∫
|z|=2r

(
f(z, t)

w − z
− f(z, t)

u− z

)
dz

= Cr

∫
|z|=2r

f(z, t)

(w − z)(u− z)
(u− w) dz

And so Jensen’s inequality along with the fact that |z − u|, |w − u| ≥ r gives that, for every t,

|f(w, t)− f(u, t)| ≤ Cr ‖f‖2r |u− w| .

This inequality gives that for |ζ| ≤ r,

|f(u, t)− f(w, s)| ≤ Cr ‖f‖2r (|u− ζ|+ |w − ζ|) + |f(ζ, t)− f(ζ, s)| .

And so if we take any α-net Kα ⊂ Br and take δ < α/2,

sup
‖(w,t)−(u,s)‖<δ
|w|,|u|≤r

|f(w, t)− f(u, s)| ≤ 2Cr ‖f‖2r α+ max
w∈Kα

sup
|s−t|<δ

|f(w, t)− f(w, s)| . (2.5.2)

Now fix ε > 0. Since f`(w, ·) is tight for w ∈ C, for every γ > 0 we can find a δw > 0 such that

sup
`∈N

P

(
sup
|s−t|<δ

|f`(w, t)− f`(w, s)| > ε

)
< γ.

In fact, just by adding probabilities, for any γ, α > 0 we can find a finite α-net Kα ⊂ Br and a δα > 0

such that,

sup
`∈N

P

(
max
w∈Kα

sup
|s−t|<δα

|f`(w, t)− f`(w, s)| > ε

)
< γ. (2.5.3)

Now fix γ > 0. Assumption (2) means that we can find an M such that P (||f`||2r > M) < γ. Take

α < ε(2MCr)
−1 and find a finite α-net Kα and a δα satisfying equation (2.5.3). Finally take δ =

min(δα, α/2). Using equation (2.5.2), we get that,

sup
`∈N

P

 sup
‖(w,t)−(u,s)‖<δ
|w|,|u|≤r

|f`(w, t)− f`(u, s)| ≥ 2ε

 < 2γ. (2.5.4)

Since ε and γ were arbritary, this inequality along with Assumption (2) and Arzelà-Ascoli gives tightness

of the sequence f` restricted to the discs Dr. And so by Prokohorov’s theorem a subsequence of f`

restricted to Dr converges in law. By a diagonal argument, there is a subsequence f`k such that for

each integer r, the restriction of f`k to Dr converges to a random analytic function fr on Dr. The

distributions of the functions fr are consistent with respect to restricting to smaller discs, and thus there

is a random analytic function f on C× [0, 1] such that f`k → f in law with respect to the local uniform

topology. Condition (2) is strong enough to ensure that f is unique and thus f` → f in law.
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Proof of Theorem 2.2.1. We intend to apply Lemma 2.5.1 to Qn(w, t) := Qn,E(w, bnt/τc). We cannot

apply this directly since for any w ∈ C, the processes Qn(w, ·) are piecewise constant but not continuous.

Instead, for all w ∈ C we let Q̃n(w, ·) be the linearized version of the process Qn(w, ·). By this we mean

the function whose graph is given by the straight line between each consecutive jump discontinuity of

Qn(w, ·). Since Qn are analytic for any fixed t, Q̃n ∈ A4 . Theorem 1 of [13] gives the tightness bound

(2) for Q̃n. Theorem 2 of [13] and the continuous mapping theorem gives that for fixed w ∈ C, Q̃n(w, ·)
converge in law with respect to the uniform topology and so by by Prokhorov the tightness bound (1).

This theorem also gives convergence of the finite dimensional distributions of Qn and hence those of Q̃n

which is condition (3). So by Lemma 2.5.1 Qn converges in law to Q and since d(Qn, Q̃n) goes to zero

in probability we get that Qn converges in law to Q with respect to the local uniform topology.

2.6 Local Eigenvalue Estimate

In this section we give the proof of Lemma 2.4.1. The moment bound on the number of eigenvalues in

a macroscopic interval follows from an application of Theorem 2.2 of [14].

Theorem 2.6.1 ([14]). Let µ < µ′ be consecutive eigenvalues of Hn. Then for any E ∈ (µ, µ′),

µ′ − µ ≥

(
n∑
`=1

‖Mn(E, `)‖2
)−1

. (2.6.1)

Corollary 2.6.2. For any interval ∆ ⊂ R, let Nn(∆) := |Λn ∩∆| be the number of eigenvalues of Hn

in ∆. Then,

Nn(∆) ≤ 1 + |∆|2
∫

∆

dE

(
n∑
`=1

‖Mn(E, `)‖2
)
.

Proof. Fix n ∈ N and let τ(E) :=
∑n
`=1 ‖Mn(E, `)‖2. Take µ < µ′ ∈ ∆ consecutive eigenvalues of Hn.

Integrating equation (2.6.1) gives

(µ′ − µ) ≥ 1

µ′ − µ

∫ µ′

µ

dE

τ(E)

≥ 1

|∆|

∫
∆

dE

τ(E)
.

This gives a uniform lower bound on the distance between any two consecutive eigenvalues in ∆. And

so by Jensen’s inequality,

Nn(∆) ≤ 1 +

(
|∆|
/

1

|∆|

∫
∆

dE

τ(E)

)
≤ 1 + |∆|2

∫
∆

dEτ(E).

To prove Theorem 2.4.1 via Corollary 2.6.2 we need a moment bound on the transfer matrices.
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Lemma 2.6.3. Let ‖·‖ be the Hilbert-Schmidt nnorm on M2×2(C). There is a continuous function f

on (−2, 2) such for every E ∈ (−2, 2),

sup
n

max
0≤`≤n

E ‖Mn(E, `)− I‖3 < f(E).

Proof. Fix E ∈ (−2, 2) and n ∈ N and recall that for 0 ≤ ` ≤ n,

Mn(E, `) = T (E − v`,n)T (E − v`−1,n) · · ·T (E − v1,n),

with T (x) :=

(
x −1

1 0

)
and v`,n = σω`√

n
.

We will prove a bound for the process X` = T−`(E)Mn(E, `). Using the identity

T (y)T−1(x) = I +

(
0 y − x
0 0

)
,

we have that

X` = T−`T (E − v`,n)T−1T `X`−1 (2.6.2)

= (I − v`,nE`)X`−1, (2.6.3)

where E` = T−`

(
0 1

0 0

)
T `(E).

We first show that

‖E`‖ ≤ c1(ρ(E))2, (2.6.4)

where c1 does not depend on n or E and ρ(E) = 1/
√

1− (E/2)2. Recall that we can write T (E) =

ZDZ−1 where

D =

(
z 0

0 z

)
, Z =

iρ(E)

2

(
z z

1 1

)
, Z−1 =

(
1 −z
−1 z

)
. (2.6.5)

with z = E/2 + i
√

1− (E/2)2.

Using the submultiplicativity of the Hilbert-Schmidt nnorm along with the fact that |z| = 1 gives that

for every ` ∈ Z,

∥∥T `(E)
∥∥ ≤ 16ρ(E).

And since ‖E`‖ ≤
∥∥T `(E)

∥∥∥∥T−`(E)
∥∥, we get the bound (2.6.4).

Now notice that X` is a martingale with X0 = I. We use the Burkholder-Davis-Gundy inequality along

with Doob’s Decomposition to get that for 0 ≤ ` ≤ n,

E max
k≤`
‖Xk − I‖3 ≤ c2 E

(∑̀
k=1

E
[
‖Xk −Xk−1‖2 |Fk−1

])3/2

,
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Now use that Xk −Xk−1 = vkEkXk−1, the bound on Ek, and that Ev2
`,n = σ2/n to get that

E max
k≤`
‖Xk − I‖3 = c2 E

(
c1σ

2ρ(E)2

n

∑̀
k=1

‖Xk−1‖2
)3/2

≤ c3ρ(E)3 1

n
E
∑̀
k=1

‖Xk−1‖3 ,

with the last inequality following from Jensen. Now using the inequality ‖A+B‖p ≤ 2p(‖A‖p + ‖B‖p),

E max
k≤`
‖Xk − I‖3 ≤

c3ρ(E)3

n

∑̀
k=1

(
E ‖Xk−1 − I‖3 + ‖I‖3

)
(2.6.6)

≤ c4ρ(E)3

(
1 +

S`−1

n

)
, (2.6.7)

where we have set S` =
∑`
k=1 E ‖Xk − I‖3. This gives that

S` − S`−1 = E ‖X` − I‖3

≤ c4ρ(E)3

(
1 +

S`−1

n

)
,

Finally, letting R` = 1 + S`/n, we have that R` ≤ R`−1(1 + c4ρ(E)3/n), and so R` ≤ exp(cρ(E)3) for

1 ≤ ` ≤ n. Therefore, equation (2.6.7) gives that

E max
0≤k≤n

‖Xk − I‖3 ≤ c4ρ(E)3Rn−1

≤ d1ρ(E)3 exp(d2ρ(E)3),

for some constants d1 and d2 that do not depend on E or n. Since Mn(E, `) = T−`(E)X`, this finishes

the proof.

Proof of Theorem 2.4.1. Using Corollary 2.6.2 we have that

|Nn(E)− 1|3/2 ≤ max

[|∆n(E)|2
∫

∆n(E)

dx

n∑
`=1

‖Mn(E, `)‖2
]3/2

, 1

 .

Since |∆n(E)| = 2R/(ρ(E)n, we apply Jensen twice to get

E

[
|∆n(E)|2

∫
∆n(E)

dx

n∑
`=1

‖Mn(x, `)‖2
]3/2

≤ g(E)

n3
E

∫
∆n(E)

dx

n∑
`=1

‖Mn(x, `)‖3 .
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Here g is continuous on (−2, 2). Now we use Fubini along with Lemma 2.6.3 to get that,

E

∫
∆n(E)

dx

n∑
`=1

‖Mn(x, `)‖3 ≤ R

ρ(E)
supx∈∆n(E)f(x).

Now fix ε > 0 and Iε = (−2 + ε, 2 − ε). There is an N ∈ N such that for any n ≥ N if E ∈ Iε, then

∆n(E) ⊂ Iε/2. Since f is continuous on (−2, 2) this means that for n ≥ N ,

E |Nn(E)− 1|3/2 ≤ max

(
C

n3
, 1

)

2.7 Analytic Estimates

Lemma 2.7.1. Let D ([0, 1],C) be the space of cadlag functions from [0, 1] to C. Suppose the sequence

fn ∈ D ([0, 1],C) converges uniformly to f ∈ C ([0, 1],C). Then for fixed z ∈ C, |z| = 1 but z 6= 1,

lim
n→∞

∫ 1

0

fn(t)zbntcdt = 0.

Proof. Since ∣∣∣∣∫ 1

0

fn(t)zbntcdt−
∫ 1

0

f(t)zbntcdt

∣∣∣∣ ≤ ‖fn − f‖ ,
it suffices to show that for any continuous f : [0, 1]→ C,

lim
n→∞

∫ 1

0

f(t)zbntcdt = 0.

We first assume that f is simple, by which we mean that f := c1[a,b), for some constant c and subinterval

(a, b) ⊂ [0, 1]. We have that

∫ 1

0

f(t)zbntc =
c

n

bnbc∑
k=dnae

zk + o

(
1

n

)
.

Since z 6= 1,
∑N
k=0 z

k is bounded for all N ∈ N, which finishes this case. Additivity then gives the

result for any finite sum of piecewise, simple functions. And for a general f ∈ C ([0, 1],C), we can find

functions gm which are finite sums of simple functions so that

sup
n

∣∣∣∣∫ 1

0

gm(t)zbntcdt−
∫ 1

0

f(t)zbntcdt

∣∣∣∣ ≤ ∫ 1

0

|gm(t)− f(t)| dt < εm,

with εm → 0. This completes the proof.
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Lemma 2.7.2. Let ρ(x) = 1/
√

1− (x/2)2. Fix ε > 0 and F ∈ Cc(R). Then

sup
|µ|<2−ε

∣∣∣∣∫ F (nρ(x)(µ− x)) ρ(x)dx−
∫
F (x)dx

∣∣∣∣ = o

(
1

n

)

Proof. Suppose that suppF ⊂ [−R,R] for some R > 0. Then we can suppose |µ− x| ≤ R/n because

otherwise since ρ ≥ 1 we have that F (nρ(x)(µ−x)) = F (nρ(µ)(µ−x)) = 0. ρ is Lipschitz on any closed

subset of (−2, 2) and so for n large enough (depending only on ε) we have that

• |ρ(µ)− ρ(x)| ≤ C/n,

• |nρ(µ)(µ− x)− nρ(x)(µ− x)| ≤ RC
n .

This implies that∫
|F (nρ(x)(µ− x)) ρ(x)dx− F (nρ(x)(µ− x)) ρ(µ)dx| ≤ C

n

∫
F (nρ(x)(µ− x)) dx

≤ CR ‖F‖
n2

.

And also that,∫
|F (nρ(x)(µ− x)) ρ(µ)dx− F (nρ(µ)(µ− x)) ρ(µ)dx| ≤ ρ(µ) sup

|x−y|≤CR/n
|F (x)− F (y)|

∫
1[|µ− x| < R/n]dx

≤ D

n
sup

|x−y|≤CR/n
|F (x)− F (y)|

= o (1/n)

since F is uniformly continuous. These two inequalities imply

sup
|µ|<2−ε

∣∣∣∣∫ F (nρ(x)(µ− x)) ρ(x)dx−
∫
F (nρ(µ)(µ− x)) ρ(µ)dx

∣∣∣∣ = o (1/n) .

And we are done since
∫
F (nρ(µ)(µ− x)) ρ(µ)dx =

∫
F (x)dx.

Lemma 2.7.3. Let ρ(x) = 1/
√

1− (x/2)2 and take F ∈ Cc(R) with F ≥ 0 and F (x) < F (y) for

|x| > |y|. Then,

sup
|µ|<2

∫ 2

−2

F (nρ(x)(x− µ)) ρ(x)dx ≤ O
(

1

n

)
.

Proof. By symmetry of ρ(x), we can assume µ ≥ 0. Since ρ(x) ≥ 1, we have that |x− µ| ≤ R/n, where

suppF ⊂ [−R,R]. In particular, since µ ≥ 0, for n large enough, we have that x is bounded away from

−2 independently of µ. And so we can write

c1√
2− x

≤ ρ(x) ≤ c2√
2− x

.

The decreasing property of F gives that∫ 2

−2

F (nρ(x)(x− µ)) ρ(x)dx ≤ c2
∫ 2

−2

F

(
c1n

x− µ√
2− x

)
dx√
2− x

.
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Writing γ = 2− µ and changing variables y =
√

2− x/√γ,

∫ 2

−2

F

(
c1n

x− µ√
2− x

)
dx√
2− x

. =
√
γ

∫ 2/
√
γ

0

F

(
c1n
√
γ

(
1− y2

y

))
dy

≤ C ‖F‖√γ
∫ ∞

0

1
[
|y − 1/y| ≤ R/(n√γ)

]
dy.

Now fix α > 0. Notice that if 0 ≤ x ≤ 1,

|x− 1/x| ≤ 2α =⇒ x ≥
√
α2 + 1− α.

And so ∫ 1

0

1 [|x− 1/x| ≤ 2α] ≤ 1 + α−
√
α2 + 1

≤ Cα.

Similarly if x ≥ 1, then

|x− 1/x| ≤ 2α =⇒ x ≤ α+
√
α2 + 1.

And so ∫ ∞
1

1 [|x− 1/x| ≤ 2α] ≤ α− 1 +
√
α2 + 1

≤ Cα.

Therefore

√
γ

∫ ∞
0

1
[
|x− 1/x| ≤ R/(n√γ)

]
dx ≤ C√γ R

n
√
γ

= C/n.
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