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Anderson Model

Anderson (1958) introduced a model of the behaviour of electrons
in alloy crystal.

- Crystal: lattice structure of atoms.

- Alloy: random potential at every lattice point.

- Approximations: model interaction of electron with atoms via

just an exterior potential, neglect electron-electron interaction.

Electrons move along the lattice subject to the random potential.
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Anderson Model on 7Z x 7Z




Discrete Random Schrodinger operator on 7Z

H=A+0oV, on(?*Z)

@ A is the discrete Laplacian on Z,

(A@)e = dpy1 + 1.

@ V is a random delta potential at each point in Z,

(V¢)f — Vf¢£7 )
voareiidonZ, Ev, =0 EvZ =1

@ 0 € R, fixed

0+0—o—o.u+o“~—o—~0'




Discrete Random Schrodinger operator on Z

aVvy 1
H= 1 ov 1

1 OVit1



@ no pure point spectrum, no eigenvectors
@ spectrum(H) = (-2,2)

Extended eigenvectors:

1= 2cosb,
YH (k) = aexp(ikf) + bexp(—ikd), k € Z.
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Anderson Localization (o # 0, random)

Theorem (Goldsheid, Molchanov, Pastur (1977), Kunz, Souillard
(1980), Carmona, Klein, Martinelli (1987) )

Assume V' is random, not concentrated on a single point, and
E [w]? < oo for some p > 0. Then with probability one,

@ H has pure point spectrum A.

@ H has a complete set of orthonomal eigenvectors
{YH : p € N} with

|[p*(k)| < Cexp(—mlk — o),

(C and ng are random)




Anderson Localization

—
e ———
—
——
—
—
—
—
——
—
—
—
—
—
——
—
—
—

—

—
—

—

—

=

P

b

P




Local Eigenvalue Statistics

Restrict H to the finite interval [0,n] with Dirichlet boundary

conditions
ovi 1
1 own 1
H, = 1
1
1 ov,



Empirical Measure

Let A, be the set of eigenvalues of H,
The (random) empirical eigenvalue measure
1
Hn = " Z Ox
AEA,
converges weakly a.s. to the measure p/27 on (—2,2) with

1

= A Gree
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Local Eigenvalue Point Process

Near E € (—2,2), eigenvalue spacing ~ p(E)n

"zoom in” to see a point process in the limit.

np(E)(An — E)

11/42



Poisson Statistics

Theorem (Minami (1996))

For any E € (—2,2), the point process
np(E)(An — E)

converges in law to a Poisson point process on R with intensity 1.
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Higher Dimensions: Z9, d > 1

@ Foro > Cy

o Localization (Aizenman and Molchanov, 1993; Fréhlich and
Spencer, 1983)
o Poisson statistics (Minami, 1996)

@ For 0 < ¢y, conjectures:

e d > 3, extended eigenstates and random matrix type statistics
of eigenvalues
e d = 2, opinions vary.
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Explore Transition between

Anderson localization extended states
and <— and
local Poisson statistics no local limits
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Local Point Process

Take 0 = n~1/2 depending on the size of the interval [0, n].
vi/\/n 1
1 Vg/\/ﬁ 1
H, = 1 '

1. Vn/\/N
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Local Point Process

Theorem (Kritchevski, Valkd, Virdg (2009))

For 0 < |E| < 2, the limit of the local eigenvalue point process
(properly centred)

np(E)(\, — E)

converges in law to a point process Schg
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Eigenvectors: Localized to Extended

Take 0 — 0.

H=A+oV,
ve ~ N(0,1), 0 =0.5

10k
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Eigenvectors: Localized to Extended

Take 0 — 0.

H=A+o0V,o0=0.1
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Eigenvector Shape

H=A+0oV,

- As o goes to zero the eigenfunctions become more delocalized.

- Localization length ~ 072 .

- Goal is to understand the shape of eigenfunctions as the noise
goes to zero.



Localization Scale

Back to the finite volume operator,

Vl/\/E 1
1 va//n 1
H, = 1 -

1
1 wvy/v/n
o= nfl/z, localization length ~ n.

On the scale of localization so we see the main part of the
eigenvector.



The Shape of the Eigenvector

Want the scaling limit of eigenvectors as n goes to infinity.

vt ([nt]), t€[0,1]

Behaviour too oscillatory.

ve ~ N(0,1), n = 1000.
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The Shape of the Eigenvector

Consider instead the measure on [0, 1] with density
nlw#(Lnt))P dt, t € [0,1].
Encodes the distribution of the eigenfunction.
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The Shape of the Eigenvector

n|yp*(|nt])|? dt, t € [0,1].
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ve ~ N(0,1), n = 2000.
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The Shape of the Eigenvector

n|yp*(|nt])|? dt, t € [0,1].

0.6
041

02

0.2 0.4 0.6 0.8 1.0

ve ~ N(0,1), n = 2000.
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The Shape of the Eigenvector

n|yp*(|nt])|? dt, t € [0,1].
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Main Theorem

Theorem (Rifkind, Virag)

Pick p uniformly from the eigenvalues of H,, then

. 5( (/7 ‘/2)2>dt

(1. [ (Lne)) P ) :»( 5 () %

where

S(t) = exp (—[tl/4+ Be/V2),
1

E Y o /T (E27

U ~ Uniform[0, 1],

and B;, E, U are all independent.
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Exponential Brownian Motion

exp (—|t — u|/2 + Bi—_u)
1.8;
14
1.0;—
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Exponential Brownian Motion

exp(— |t —ul/2+ Bi—y)

101

061
04

02

0.2 0.4 0.6 0.8 1.0

29 /42



Transfer Matrices

Encode eigenvector, eigenvalue equation in product of 2 x 2
matrices.
Recall the eigenvalue equation:

Hné = po,
¢0=0=¢py1.

= Qpy1= <M - \;%) o — Pr—1

Gos1\ _ u [ Pe
( oy, > =T <¢z1> ’

p—f -1
TV = vn 0 © transfer matrix.

We can write this as

where

1
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Transfer Matrices

Take product of transfer matrices

M} =T)T) ... T

Ger1\ _ (1
(o) = (%)
M <(1)> = <¢$,:1> = <S> <= p is an eigenvalue,

in which case the corresponding eigenvector is

oy = (Mé‘_l)ll (=1,...,n.

Characterize this random product process to understand the
spectral problem for H,,.
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Local Transfer Matrix Process

Scale locally around fixed 0 < |E| < 2.
: 1o _ A
Zoom in on i neighbourhood, = E + on

Focus on A,
M) =T}rT) ... T{,

E+2A v _1
T}:( +p'i vn 0),

o £+ p% is an eigenvalue <= (/\/I,’,\)11 =0

° ¢2‘ — (M}71)11 is the eigenvector



Local Transfer Matrix Process

Want limiting process {M}, £ =1,...,n} as n goes to co.

Notice,

E+2 -2 1 E -1

We can diagonalize T = ZDZ~ 1, with

[z z [z 0 B
Z_<1 1), D—<0 z)’ Z—E—{—I 1-— E?/4.
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Change of Basis

Look at the I\/Ig\ process in this basis. For a, b € R,
—1(a\ _p (ai—bzi
z (b) 2 <ai — bzi> ’
g (VY (™

Eigenvalue hitting equation

@ starts at Z 1 <1> =2 < I.>
0 —1

@ ends at Z1 0 =< _—ZI.,CER
c 2\ —z

arg m) determines if \ is an eigenvalue

Nl
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This is not a well behaved process.

T} ~ T* and so in this basis,
Z7 M} is a perturbation of D*

Cannot have a limiting process.

= recenter: Q) =D~ *Z71Mm)
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Local Limiting Diffusion

Theorem (Kritchevski, Valko, Virdg)
Fix0 < |E| <2 and let T = 1/(1 — (E/2)?).

(Qf‘nt/ﬂ,O <t<7)=> (Q)‘/T(t),O <t<7),

where
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Eigenvectors and Eigenvalues in the Limit

As in the finite case, we can write

@) (3) = (fﬁ%)

6*/7(7) determines the limiting point process Schg.

rM7(t) determines the limiting eigenvector.
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Local Eigenvalue Point Process

Theorem (Kritchevski, Valko, Virdg)
Consider the family of SDE's

d0M(t) = Adt + dB + Re [e"'(’A(t)dW} , 0°0)=0

coupled together for all values of \ € R.
B and W are standard real and complex Brownian motions.

For 0 < |E| < 2 and with T = (1/(1 — (E/2)?)

A, — arg(z°"?) = Schg = {/\ 0M7(7) € 27TZ} .
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Local Joint Limit

Theorem

Fix0 < |E| <2, 7 =1/(1 — (E/2)?), and 6 uniform on [0, 27].
Then,

{(np(E)(u— E)+0,£ ‘gzﬁ“ (L%J) ‘2 dt) . i an eigenvalue of H,,}

converges in law to

Pe = { (0, (/(6)2dt) - A e Sche}.

Follows from [KVV] Theorem and more tightness.
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Analysis of Limiting Joint Distributions

dOM(t) = Adt + dB + Im [e*f‘)*(f)dw} , 0%0)=0
dinr(t) = % + Re |:e_i9/\(t)dW:| . Inr*0)=0.

For fixed A, Inr* and 6 processes are independent.

They are coupled by the fact that
{rM7(t), 0 < t < 7} is an eigenvector when 0V 7(7) € 277

Use co-area formula and Girsanov theory to analyze the
distribution of r*
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How to do this on Z7
H=A+0oV

H has pure point spectrum A with ¢ eigenfunctions.
{v: e}
Pick an eigenfunction 1)* from the spectral measure at 0,
[4#(0)[? 6
-
pEN

Then is it true that

o (115 (A/z>2>

o2

2
dt = exp (Bt/\ﬁ— t/4) dtasoc— 07
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Thank You
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